首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical measurements were carried out by using thermophilic cytochrome P450 CYP119A2 (P450st) modified with poly(ethylene oxide) (PEO) in PEO200 as an electrochemical solvent. The PEO modified P450st gave clear reduction–oxidation peaks by cyclic voltammetry in oxygen-free PEO200 up to 120 °C. The midpoint potential measured for the P450st was −120 mV vs. [Fe(CN)6]4−/[Fe(CN)6]3− at 120 °C. The peak separation, ΔE, was 16 mV at 100 mV/s. The estimated electron transfer rate of PEO-P450st at 120 °C was 35.1 s−1. The faster electron transfer reaction was achieved at higher temperatures. The electrochemical reduction of dioxygen was observed at 115 °C with the PEO-modified P450st system.  相似文献   

2.
A sensitive electrochemiluminescence (ECL) sensor for melamine analysis was fabricated based on Ru(bpy)32+-doped silica (Ru(bpy)32+@SiO2) nanoparticles and graphene composite. Spherical Ru(bpy)32+@SiO2 nanoparticles with uniform size about 55 nm were prepared by the reverse microemulsion method. Since per Ru(bpy)32+@SiO2 nanoparticle encapsulated a great deal of Ru(bpy)32+, the ECL intensity has been greatly enhanced, which resulted in high sensitivity. Due to its extraordinary electric conductivity, graphene improved the conductivity and accelerated the electron transfer rate. In addition, graphene could work as electronic channel improving the efficient luminophor amount participating in the ECL reaction, which further enhanced the ECL signal. This proposed sensor was used to melamine analysis and the ECL intensity was proportional to logarithmic melamine concentration range from 1 × 10−13 M to 1 × 10−8 M with the detect limit as low as 1 × 10−13 M. In application to detect melamine in milk, satisfactory recoveries could be obtained, which indicated this sensor having potential application in melamine analysis in real samples.  相似文献   

3.
This article reports a rapid method of preparing self-assembled monolayers of dodecanethiol (C12SH-SAMs) on polycrystalline gold by microwave irradiation (MWI, 650 W, duty cycle is 10%). The qualities of C12SH-SAMs were characterized by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the C12SH-SAMs formed by MWI in 120 s (C12SH-SAMsMWI,120 s) have low ionic permeability (the differential capacitance Cd values are independent of the scan rate and phase angle at 1 Hz Φ1 Hz = 89 ± 0.9°), excellent electrochemical blocking ability towards the redox probe (the current iMWI,120 s obtained from CV is lowest when compared to other SAMs and charge transfer resistance Rct = (1.15 ± 0.19) × 106 Ω cm2), and high surface coverage (99.996 ± 0.001%).  相似文献   

4.
P450cin stereoselectively hydroxylated its natural substrate 1,8-cineole to 2β-hydroxy-1,8-cineole in an electrochemical cell which allowed for substitution of the natural cofactor NADPH by artificial redox mediators. Cobalt sepulchrate, phenosafranine, safranine T, FAD and FMN enabled artificial electron transfer from the platinum electrode to P450cin via the redox partner protein cindoxin. The highest product formation, 6.50 ± 0.60 nmol (product) nmol (P450)?1 min?1 cm?2, was achieved using cobalt sepulchrate. Surprisingly, phenosafranine and safranine T enabled electron transfer even in the absence of NADPH, cindoxin, and cindoxin reductase, thereby illustrating that none of the natural redox partners is needed for product formation.  相似文献   

5.
The heterometallic photoinitiated electron collector [{(phen)2Ru(dpp)}2RhBr2](PF6)5 (phen = 1,10-phenanthroline, dpp = 2,3-bis(2-pyridyl)pyrazine) has been synthesized and studied by spectroscopic, photophysical, electrochemical, and photochemical techniques. Substitution of chloride with bromide in the previously reported [{(phen)2Ru(dpp)}2RhCl2](PF6)5 complex presents a new photoinitiated electron collector which can assist in understanding the functioning of our supramolecular systems [{(TL)2Ru(BL)}2RhX2](PF6)5 (TL = terminal ligand, BL = bridging ligand, X = halide) in the photoinitiated electron collection and generation of hydrogen through the reduction of water and a detailed comparison is presented. Both the bromide and chloride analogues of these supramolecular complexes contain low energy, emissive metal-to-ligand charge transfer (3MLCT) excited states that populate lower lying metal-to-metal charge transfer (3MMCT) excited states. The electrochemistry of these complexes showed an impact on the reduction of the central RhIII upon halide substitution with the bromide analogue [(phen)2Ru(dpp)}2RhBr2](PF6)5 having a slightly lower reduction potential than the corresponding chloride counterpart. The more positive reduction of RhIII to generate the RhI species in the bromide analogue impacts the photocatalytic properties upon photolysis in the presence of a sacrificial electron donor. The trimetallic complex [{(phen)2Ru(dpp)}2RhBr2](PF6)5 generates hydrogen through the reduction of water with higher yields than the chloride [{(phen)2Ru(dpp)}2RhCl2](PF6)5 analogue under the same conditions. Despite the longer lived 3MLCT state of both [(TL)2Ru(dpp)]2+ and [{(TL)2Ru}2(dpp)]4+ when TL = phen vs. bpy (bpy = 2,2′-bipyridine), the phen trimetallics with X = Cl? or Br? do not display longer lived 3MLCT states and show lower H2 yields than the analogous bpy trimetallic systems.  相似文献   

6.
The interaction of [Nd(bpy)2Cl3·OH2], where bipy is 2,2′-bipyridine, with DNA has been studied by absorption, emission, and viscosity measurements. [Nd(bpy)2Cl3·OH2] showed absorption decreasing in charge transfer band with increasing of DNA. The binding constant, Kb has been determined by absorption measurement and found to be (1.5 ± 0.1) × 105 M?1. The fluorescent of [Nd(bpy)2Cl3·OH2] has been investigated in detail. The interaction was also studied by fluorescence quenching technique. The results of fluorescence titration revealed that DNA had the strong ability to quenching the intrinsic fluorescence of Nd(III) complex at 327 nm. The binding site number n, apparent binding constant Kb and the Stern–Volmer quenching constant KSV have been determined. Thermodynamic parameters have been calculated according to relevant fluorescent data and Van’t Hoff equation. Characterization of bonding mode has been studied. The results suggested that the major interaction mode between [Nd(bpy)2Cl3·OH2] and DNA was groove binding.  相似文献   

7.
Two new Ru(II) complexes, [Ru(bpy)2(1-COO-iqu)]+ (2; bpy = 2,2′-bipyridine, 1-COO-iqu? = isoquinoline-1-carboxylate) and [Ru(bpy)2(3-COO-iqu)]+ (3; 3-COO-iqu? = isoquinoline-3-carboxylate), were prepared and their crystal structures solved. The ground and excited state properties of 2 and 3 were characterized and compared to those of [Ru(bpy)3]2+ (1). The presence of the oxygen atom in the Ru(II) coordination sphere makes 2 and 3 easier to oxidize than 1. The Ru  bpy MLCT absorption and emission of 2 and 3 are red-shifted relative to that of 1 in CH2Cl2, and the E00 energies were estimated to be 1.89 eV and 1.95 eV from the low temperature emission of 2 and 3, resulting in excited state oxidation potentials of ?1.03 V and ?1.10 V vs SCE, respectively. In addition to the short-lived emissive 3MLCT state, a long-lived species is observed in the transient absorption of 3 in DMSO (τ = 49 μs) and pyridine (τ = 44 μs), assigned to a solvent-coordinated complex. This intermediate is not observed for 3 in non-polar solvents or for 2. The absence of the solvent coordinated intermediate in 2 is explained by the stronger Ru–O bond afforded by the lower conjugation in that extends onto the carboxylic acid in the 1-COO-iquo?ligand, compared to that in the 3-COO-iqu?ligand in 3. Transient absorption experiments also show that the 3MLCT excited state of 3 is able to reduce methyl viologen.  相似文献   

8.
《Tetrahedron: Asymmetry》2005,16(21):3512-3519
Stereoselective reductions of prochiral ketones were performed using a new thermophilic, NAD-dependent alcohol dehydrogenase from Thermus sp. (TADH). The enzyme was produced on 2L-scale from recombinant Escherichia coli and purified by a simple, one-step heat treatment procedure yielding 220 mg of pure enzyme. Regeneration of NADH was catalyzed by the organometallic complex [Cp*Rh(bpy)(H2O)]2+ using formate as a reducing agent. The catalytic performance of [Cp*Rh(bpy)(H2O)]2+ in terms of total number of catalytic cycles and number of catalytic cycles per hour achieved herein (up to 1500 and more than 400 h−1, respectively), are the highest reported for a non-enzymatic nicotinamide regeneration system so far. Chemoenzymatic reduction reactions in a two liquid phase setup were performed on a gramme-scale, for example, 1.3 g of enantiopure (1S,3S)-3-methylcyclohexanol was obtained after purification. The volumetric productivity reached up to 3.9 mM h−1 with an average of 2.6 mM h−1 (5.3 g L−1 d−1) over 10 h. In addition, chemoenzymatic oxidations utilizing the same catalyst set and molecular oxygen as a terminal electron acceptor were performed. Thus, the preparative value of chemoenzymatic transfer hydrogenations with [Cp*Rh(bpy)(H2O)]2+ as a regeneration catalyst coupled especially to thermophilic ADHs was demonstrated.  相似文献   

9.
Glucose-oxidizing enzymes are widely used in electrochemical biosensors and biofuel cells; in most applications glucose oxidase, an enzyme with non-covalently bound FAD and low capability of direct electronic communications with electrodes, is used. Here, we show that another glucose-oxidizing enzyme with a covalently bound FAD center, hexose oxidase (HOX), adsorbed on graphite, exhibits a pronounced non-catalytic voltammetric response from its FAD, at − 307 mV vs. Ag/AgCl, pH 7, characterized by the heterogeneous electron transfer (ET) rate constant of 29.2 ± 4.5 s 1. Direct bioelectrocatalytic oxidation of glucose by HOX proceeded, although, with a 350 mV overpotential relative to FAD signals, which may be connected with a limiting step in biocatalysis under conditions of the replacement of the natural redox partner, O2, by the electrode; mediated bioelectrocatalysis was consistent with the potentials of a soluble redox mediator used. The results allow development of HOX-based electrochemical biosensors for sugar monitoring and biofuel cells exploiting direct ET of HOX, and, not the least, fundamental studies of ET non-complicated by the loss of FAD from the protein matrix.  相似文献   

10.
《Solid State Sciences》2007,9(11):1006-1011
Three complexes, M2(bpy)2(bpdc)2·xH2O [M = Cu, x = 0; M = Zn or Cd, x = 2], have been hydrothermally synthesized by 1,1′-biphenyl-2,2′-dicarboxylic acid (H2bpdc) with 2,2′-bipyridine (bpy) to form binuclear molecules. In each, the two bpdc groups align the two opposing planar [M(bpy)]2+ cations. The molecules are connected by C–H⋯O hydrogen bonds, π–π stacking, and C–H⋯π interactions to form three dimensional supramolecular networks. Furthermore, at room temperature, complex 3 exhibits strong photoluminescence.  相似文献   

11.
Twenty-three different Rh complexes of the (NHC)RhCl(cod) and (NHC)RhCl(CO)2 type were synthesized from [RhCl(cod)]2. The electron donating nature of the NHC ligands was changed in a systematic manner. The redox potentials of the various (NHC)RhCl(cod) and the ν(CO) of the various (NHC)RhCl(CO)2 were determined. A correlation of the Rh redox potentials and the Rh ν(CO), respectively, with the related data from analogous (NHC)IrCl(cod) and (NHC)IrCl(CO)2 complexes established two linear relationships. The linear regression (R2 = 0.993) of the Rh and the Ir redox potentials results in an equation for the redox potential transformation: E1/2(Ir) = 1.016 · E1/2(Rh) ? 0.076 V. The linear regression (R2 = 0.97) of the Rh and Ir νav(CO) results in an equation for the νav(CO) transformation: νav(CO)Ir = 0.8695 · νav(CO)Rh + 250.7 cm?1. In this manner the Rh and the Ir-scale for the determination of the electron donating properties of NHC ligands are unified.  相似文献   

12.
Gold nanorods (GNRs) were synthesized by a seed–mediated growth approach followed by TEOS polymerization leading to the formation of silica layer surrounding the gold nanorod core. TEM images showed that the silica-coated gold nanorods (GNRs@SiO2) were dispersed with an average aspect ratio of 3.1 for the GNRs cores and a uniform thickness of the silica shell. The core/shell nanocomposites were further used as efficient supports for the immobilization of hemoglobin (Hb) to fabricate a novel biosensor. The immobilized Hb showed an enhanced electron transfer for its heme Fe(III) to Fe(II) redox couple. This biosensor showed an excellent bioelectrocatalytic activity towards H2O2 with a linear range from 8.0 × 10−7 to 6.1 × 10−5 M, and the detection limit was 6.0 × 10−8 M at 3σ. The apparent Michaelis–Menten constant of the immobilized hemoglobin was calculated to be 0.13 mM.  相似文献   

13.
A systematic investigation of the reactions of Cu(ClO4)2 · 6H2O with maleamic acid (H2L) in the presence of 2,2′-bipyridine (bpy) has been carried out. The chemical and structural identity of the products depends on the solvent, the absence or presence of external hydroxides in the reaction mixture and the molar ratio of the reactants. Various reaction schemes have led to the isolation of the complexes [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 (1), [Cu2(HL)2(bpy)2(H2O)2](ClO4)2 · 2H2O (1 · 2H2O), [Cu(L′′)(bpy)]n · 2nH2O (2 · 2nH2O), [Cu2(L′′)(bpy)2(H2O)2]n(ClO4)2n · 0.5nH2O (3 · 0.5nH2O), [Cu2(L′′)2(bpy)2] · 2MeOH (5 · 2MeOH), [Cu2(L′)2(bpy)2(ClO4)2] (6) and [Cu(ClO4)2(bpy)(MeCN)2] (7b), where L′′2? and L′? are the maleate(?2) and monomethyl maleate(?1) ligands, respectively. The HL? ion has been transformed to L′′2? and L′? in the known compounds 2 · 2nH2O and 6, respectively, via metal ion-assisted processes involving hydrolysis (2 · 2nH2O) and methanolysis (6) of the primary amide group. The reaction that leads to 6 takes place through the formation of the mononuclear complex [Cu(ClO4)2(bpy)(MeOH)2] (7a), whose structure was assigned on the basis of its spectral similarity with the structurally characterized complex 7b. The structures of the cations in 1 and 1 · 2H2O consists of two CuII atoms bridged by the carboxylate groups of the two HL? ligands, each exhibiting the less common η2 coordination mode; a chelating bpy molecule and a H2O ligand complete square pyramidal coordination at each metal centre. The structure of the dinuclear repeating unit in the 1D coordination polymer 3 · 0.5nH2O consists of two CuII atoms bridged by two syn,syn η1:η1:μ2 carboxylate groups belonging to two L′′2? ions; each ligand bridged two neighboring [CuII,II2] units thus promoting the formation of a helical chain. The structure of the dinuclear molecule of complex 5 · 2MeOH consists of two CuII atoms bridged by two η2 carboxylate groups from two L′′2? ligands; the second carboxylate group of each maleate(?2) ligand is monodentately coordinated to CuII, creating a remarkable seven-membered chelating ring. The L′? ion behaves as a carboxylate-type ligand in 6, with the carboxylate group being in the familiar syn,syn η1:η1:μ2 coordination mode; a chelating bpy molecule and a coordinated ClO4? complete five-coordination at each CuII centre. The crystal structures of the complexes are stabilized by various H-bonding patterns. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the ligands.  相似文献   

14.
MoS2 nanosheets of one to few layer thickness present novel electronic and enhanced catalytic properties with respect to the bulk material. Here we show that a simple and highly scalable ball-milling procedure can lead to significant improvements of the electrochemical and catalytic properties of the bulk natural MoS2. We characterized the material before and after the milling process by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy in order to evaluate morphological and chemical features. We investigated the electrochemical properties by means of voltammetry techniques to monitor the electron transfer with [Fe(CN)6]4 −/3  redox probe and the catalytic properties by monitoring the electrochemical hydrogen evolution reaction (HER). A significant overpotential lowering of about 210 mV is obtained for the HER by the ball-milled material when compared to bulk materials. This has a huge potential for the lowering of the energy consumption during hydrogen evolution. Ball-milling offers highly scalable dry method for large scale production of electrocatalyst with enhanced properties.  相似文献   

15.
The direct electron transfer between hemoglobin (Hb) and the underlying glassy carbon electrode (GCE) can be readily achieved via a high biocompatible composite system based on biopolymer chitosan (CHT) and inorganic CaCO3 nanoparticles (nano-CaCO3). Cyclic voltammetry of Hb-CHT/nano-CaCO3/GCE showed a pair of stable and quasi-reversible peaks for HbFe(III)/Fe(II) redox couple in pH 7.0 buffer. The electrochemical reaction of Hb immobilized in CHT/nano-CaCO3 composite matrix exhibited a surface-controlled process accompanied by electron and proton transfer. The electron transfer rate constant was estimated to be 1.8 s−1. This modified electrode showed a high thermal stability up to 60 °C. The apparent Michaelis–Menten constant was calculated to be 7.5 × 10−4 M, indicating a high catalytic activity of the immobilized Hb toward H2O2. The interaction between Hb and this nano-hybrid material was also investigated using FT-IR and UV–vis spectroscopy, indicating that Hb retained its native structure in this hybrid matrix.  相似文献   

16.
The reaction of solvated electrons with baicalin in N2-saturated ethanol has been studied by pulse radiolysis. The results show that a solvated electron can add to baicalin and generate a baicalin radical anion with a maximum UV absorbance peak at 360 nm. Its molar extinction coefficient at this wavelength is 1.3×104 M−1 cm−1. The rate constant for the build-up of the baicalin radical anion is 1.3(±0.4)×1010 M−1 s−1. Decay of the radical anion is induced by a proton transfer reaction and a recombination reaction, which involves a pseudo-first-order reaction with rate constant 2.6(±0.4)×103 s−1 and a second-order reaction with rate constant 1.3(±0.2)×109 M−1 s−1. The effect of acetaldehyde on the decay of the baicalin radical anion was also investigated. Electron transfer between the baicalin radical anion and acetaldehyde was not observed, probably due to the low rate of electron transfer between the baicalin radical anion and acetaldehyde. Reactivity of the rutin, quercetin, baicalin and ethyl acrylate radical anions are also compared.  相似文献   

17.
《Comptes Rendus Chimie》2007,10(8):742-747
A [4Fe–4S]1+ cluster-containing protein activates 2-hydroxyisocaproyl-CoA dehydratase by an ATP-driven electron transfer. The activator has been proposed to change its conformation by MgATP similarly to nitrogenase Fe-protein. Iron chelation by bathophenanthroline removed the reduced [4Fe–4S]1+ cluster from the activator in an ATP-dependent manner (rate, v = 0.128 ± 0.004 min−1; Km = 21 ± 1 μM); with ADP no chelation was observed (v < 0.001 min−1). Chelation of the oxidised [4Fe–4S]2+ cluster occurred faster with ADP (v = 0.34 ± 0.05 min−1) than with ATP (v = 0.132 ± 0.005 min−1). The data indicate that reduction of the activator and binding of ATP induce conformational changes necessary to transfer the electron to the dehydratase. Interaction of both proteins promotes ATP hydrolysis (Km = 0.5 ± 0.1 μM).  相似文献   

18.
《Polyhedron》2007,26(9-11):2101-2104
The bimetallic ferromagnetic chain {[K(18-crown-6)][Mn(bpy)Cr(ox)3]} (1) has been synthesized and characterized. It crystallizes in the orthorhombic chiral space group P212121 [a = 9.0510(2) Å, b = 14.4710(3) Å, c = 26.8660(8) Å, V = 3510.97(1) Å3, Z = 2]. Compound 1 is made up by anionic [Mn(bpy)Cr(ox)3] 1D chains and cationic [K(18-crown-6)]+ complexes. The magnetic exchange within the chain is ferromagnetic [J = +7.8(7) cm−1]. In the solid state, the ferromagnetic chains are well isolated magnetically and no long range magnetic ordering has been observed above 2 K.  相似文献   

19.
Here we describe a strategy for achieving direct electron transfer to native glucose oxidase (GOx), an enzyme in which the redox active centre is buried deep within the glycoprotein. To achieve this a glassy carbon electrode is modified with a mixed monolayer of 4-carboxyphenyl and a 20 Å long oligo(phenylethynyl) molecular wire (MW), assembled from the respective aryl diazonium salts. Subsequently GOx is adsorbed to the interface, followed by covalent attachment. The redox chemistry of the active centre of glucose oxidase, flavin adenine dinucleotide, was observed at an E1/2 of –443 mV (vs. Ag|AgCl). The enzyme was shown to retain its activity. Most importantly, in the absence of oxygen the electrode was still able to biocatalytically turn over glucose at −400 mV, thereby demonstrating that the enzyme was being recycled back to its catalytically active oxidized form from its inactive reduced form. The rate of enzyme turnover was 1.1 s−1.  相似文献   

20.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号