首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The present work reports the formation of multilayers of self-organized zirconium titanate nanotubes by anodizing a Ti–35Zr alloy in 1 M (NH4)2SO4 + 0.5 wt% NH4F electrolytes. It was found that multilayers consisting of different diameter nanotubes can be produced by repeated anodization steps under different conditions. Formation of new nanotubes starts in the gaps between the existing tubes. The process allows the formation of multilayer stacks consisting of layers of several 100 nm in length and adjustable nanotube diameters in a range from 50 to 180 nm.  相似文献   

2.
Titanium dioxide nanotube electrodes were fabricated by anodization of titanium and decorated with quantum-sized rutile nanowires (2 nm in diameter) by chemical bath deposition. The length of the nanotubes (120 nm in external diameter) was varied between 4 and 10 μm by changing the anodization time. The hierarchically organized electrodes present good mechanical properties and an enhanced capacity for reversible charge accumulation. The photoelectrocatalytic properties of such electrodes have been tested by photo-oxidizing both water and oxalic acid, turning out to be superior to those of bare nanotubes, which are ascribed to an enhanced interfacial area while keeping the favorable transport properties (for both electrons and chemicals) typical of nanotube electrodes.  相似文献   

3.
Ag and Au nanoparticles were found to significantly enhance the photocatalytic activity of self-organized TiO2 nanotubular structures. The catalyst systems are demonstrated to be highly efficient for the UV-light induced photocatalytic decomposition of a model organic pollutant – Acid Orange 7. The metallic nanoparticles with a diameter of ∼10 ± 2 nm (Ag) and ∼28 ± 3 nm (Au) were attached to a nanotubular TiO2 layer that consists of individual tubes of ∼100 nm of diameter, ∼2 μm in length and approx. 15 nm of wall thickness. Both metal particle catalyst systems enhance the photocatalytic decomposition significantly more on the nanotubes support than placed on a compact TiO2 surface.  相似文献   

4.
In the present work, we introduce a technique to achieve rapid growth of self-ordered anodic nanotubes with a well-defined tube-to-tube spacing (spaced tubes) and single-wall morphology. By optimizing the anodization conditions (electrolyte, temperature, etc.), the growth rate of spaced tubes can be ≈ 25 times faster than in conventional approaches while maintaining a tube-to-tube spacing of ≈ 100 nm. We show that the origin of the tube-to-tube spacing is self-ordering of nanotubes on two different scales – the primary large tubes are embedded in a matrix of secondary, very short nanotubes with a small diameter. Preferential etching of the small tubes during anodic growth leaves behind an ordered array of spaced individual tubes with a well-defined tube-to-tube spacing.  相似文献   

5.
Introducing palladium to traditional platinum-based alloy electrocatalysts offers a novel approach to develop highly efficient anode electrocatalysts for direct methanol fuel cells. In this communication, we report the preparation of thin-wall mesoporous quaternary PtPdRuOs alloy catalyst via electrochemical co-reduction of their chloride precursors all dissolved in aqueous domains of the liquid crystalline phases of an oligoethylene oxide surfactant. Scanning electron micrographs (SEM) reveal that the deposit is composed of uniform nanospheres with an average diameter of around 120 nm and the average mole composition of the metal elements is Pt37Pd33Ru22Os10. Transmission electron micrographs (TEM) disclose that the nanospheres have an ordered nanostructure which is characterized by periodic pores of 3.6 ± 0.4 nm in diameter separated by walls of 2.4 ± 0.4 nm in thickness. X-ray diffraction studies signal a highly alloying degree for the four metal components in the deposit. The specific electrochemical surface area of the nanostructured powder assessed using underpotential deposited Cu stripping technique is as high as 105 m2 g–1, much higher than that of unsupported precious metal catalysts prepared using standard techniques. These characters suggest that the quaternary PtPdRuOs alloy materials with high surface area and thin-wall mesoporous structure would be a novel class of promising electrocatalysts for direct methanol fuel cells.  相似文献   

6.
In this paper, large-scale, single-crystalline ZnO nanotube arrays were directly fabricated onto F-doped SnO2 (TCO) glass substrate via an electrochemical deposition method from an aqueous solution for the first time. The tubes had a preferential orientation along the [0 0 0 1] direction and hexagon-shaped cross sections. The novel nanostructure could be easily fabricated without a prepared layer of seeds on the substrate. The surface condition of substrate material and the experimental conditions played a key role in the nanotube formation. A possible formation mechanism has been proposed.  相似文献   

7.
The synthesis of large-scale one-dimensional silica nanotube (SNT) arrays embedded in Si substrate is demonstrated by using the combination of AAO template mask and Ar ion milling technique. The geometry of the SNTs could be precisely controlled by the process parameters, which included that the SNT diameter and the interpore distance were controlled by AAO anodization voltage and H3PO4 pore widening time, while the length of SNT was controlled by ion milling time and AAO aspect ratio. Also, the SNT fabrication parameters could be related to their photoluminescence (PL) emitting properties, when anodized at 40 V, pore widening in H3PO4 acid for 70 min and ion milled for 5 min, a strong intensity and stable ultraviolet (UV) light of 3.25 eV (381 nm) emitted from the SNTs under the excitation of 266 nm laser, which could be assumed arising from twofold coordinated silicon lone pair centers in the oxygen deficiency SNTs. The present fabrication of SNT arrays presents a novel method for intensity and frequency adjustable ultraviolet optoelectronic devices.  相似文献   

8.
A new type of nanostructured titania nanotube supported tin anode was prepared for lithium ion batteries. The as-prepared titania nanotubes are in the anatase phase with diameters of about 12 nm. Tin nanoparticles are dramatically decorated on the titania nanotubes and have a particle size of about 10 nm. This new structure promises good retention of reversible capacity on cycling for lithium intercalation. By charge/discharge measurements, the reversible capacity of the titania nanotubes supported tin anode for lithiation and de-lithiation was found to be 312 mA h/g (cycled between 0.05 and 2.0 V) and 203 mA h/g (cycled between 0.05 and 1.3 V) after 50 cycles with around 100% columbic efficiency.  相似文献   

9.
Formation of porous morphology in nanocrystalline mechanically alloyed and electrochemically etched Ti–6Al–4V biomedical alloy was investigated. The alloy was electrochemically etched in a mixture of H3PO4 and HF. The electrochemical etching results in broad range from micro(nano)-macropores formation in the surface layer, with diameter in the range of 3 nm–60 µm. On the etched surface hydroxyapatite was electrochemically deposited by using 0.042 M Ca(NO3)2 + 0.025 (NH4)2HPO4 + 0.1M HCl electrolyte. In this way bioactive surface was prepared. The pores in the surface acts as anchors for the hydroxyapatite, which grows inside them. Due to the porous morphology, the etched as well as HA deposited surface is promising for hard tissue implant applications. The nanocrystalline alloy has a nanohardness and Young modulus in the range of 993–1275 HV and 137–162 GPa, respectively.  相似文献   

10.
We report ultraviolet (UV) light detection of thin wall TiO2 nanotubes (TNTs) with open diameter ~ 20 nm obtained by a two anodization procedure. This small diameter nanotubular geometry shows significant enhancement of the photoresponsivity and results in a large increase of photocurrent. The photocurrent is one order higher than that of classical nanotubes with diameter of 140 nm at − 1.0 V bias. We attribute this improvement to the modulation of hole carrier density as a result of field effects from the diameter-dependent population of the surface-trapped electrons. This finding demonstrates inherent size effects of internal gain in semiconductor nanotubes.  相似文献   

11.
Highly ordered anodic titania nanotube arrays provide a large surface area for electrodepositing nickel nanoparticles which are used as the catalyst for carbon nanotube growth. Pt and Ru nanoparticles, approximately 3 nm in diameter, are uniformly electrodeposited on the as synthesized titania-supported carbon nanotubes (CNTs), constructing a novel catalyst for electrocatalytic oxidation of methanol. An enhanced and stable catalytic activity is obtained due to the uniformly dispersed Pt and Ru nanoparticles, and the large CNT network facilitating the electron transfer between the adsorbed methanol molecules and the catalyst substrate. An oxidation peak current density of 55 mA/cm2 is achieved at a low Pt load of 0.126 mg/cm2 with a Pt/Ru mole ratio of 1:1.  相似文献   

12.
Titania nanotubes and nanofibers were grown by anodization of titanium in fluoride-free electrolytes composed of NaCl and KBr dissolved in either water, ethylene glycol (EG), glycerol, or 50/50 mixtures of water and EG, and water and glycerol. The tubes and fibers grew out of pits in the titanium foil. The 15 nm diameter of the nanotubes was significantly smaller, and the growth rates were much faster than those of tubes developed in fluoride solutions. Nanotubes were nucleated in all electrolytes investigated, but the tubes’ lengths were limited to a few nms in EG and glycerol. Nanofibers produced in the aqueous solutions and nanotubes formed in the 50/50 aqueous mixtures grew to many tens of microns in less than 60 s.  相似文献   

13.
A novel electrodeposited CdS nanoparticle-modified highly-ordered TiO2 nanotube-array photoelectrode and its application to photoelectrochemical cells is reported. Results show formation of a thin, nanoparticulate CdS layer, comprised of sphere-like 10–20 nm diameter nanoparticles, on the anodic synthesized TiO2 nanotube-array (inner diameter of 70 nm, wall thickness 25 nm and ca. 400 nm length) electrode. The resulting CdS–TiO2 photoelectrode has an as-fabricated bandgap of 2.53, and 2.41 eV bandgap after sintering at 350 °C in N2 ambient. Photoelectrochemical properties are described in detail.  相似文献   

14.
N-doped TiO2 nanotubes were produced by anodization of a TiN alloy. The alloy was prepared to contain approximately 5 at.% of N from high-purity Ti and TiN powders using an arc-melting and consisted of a two-phase structure with different N-contents. Anodization of the alloy in fluoride-containing electrolyte results, under optimized conditions, in the growth of an ordered TiO2 nanotube layer on both phases. On the N-rich phase significantly smaller nanotubes are grown while on the low N-concentration phase nanotubes with larger diameter were formed. However, XPS and photoelectrochemical measurements demonstrate successful nitrogen doping of the resulting nanotube layers, which leads to a significant visible photoresponse from this material.  相似文献   

15.
A versatile route has been explored for the synthesis of nanorods of transition metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates using reverse micelles. Transmission electron microscopy shows that the as-prepared nanorods of nickel and copper oxalates have diameter of 250 nm and 130 nm while the length is of the order of 2.5 μm and 480 nm, respectively. The aspect ratio of the nanorods of copper oxalate could be modified by changing the solvent. The average dimensions of manganese, zinc and cobalt oxalate nanorods were 100 μm, 120 μm and 300 nm, respectively, in diameter and 2.5 μm, 600 nm and 6.5 μm, respectively, in length. The aspect ratio of the cobalt oxalate nanorods could be modified by controlling the temperature.The nanorods of metal (Cu, Ni, Mn, Zn, Co and Fe) oxalates were found to be suitable precursors to obtain a variety of transition metal oxide nanoparticles. Our studies show that the grain size of CuO nanoparticles is highly dependent on the nature of non-polar solvent used to initially synthesize the oxalate rods. All the commonly known manganese oxides could be obtained as pure phases from the single manganese oxalate precursor by decomposing in different atmospheres (air, vacuum or nitrogen). The ZnO nanoparticles obtained from zinc oxalate rods are ~55 nm in diameter. Oxides with different morphology, Fe3O4 nanoparticles faceted (cuboidal) and Fe2O3 nanoparticles (spherical) could be obtained.  相似文献   

16.
Carbon nanosprings (CNSs) with spring diameter of ~140 nm, carbon ring diameter of ~100 nm and pitch distance of ~150 nm, synthesized by using a catalytic chemical vapor deposition technology, have been investigated for potential applicability in lithium batteries as anode materials. The electrochemical results demonstrate that the present CNSs are superior anode materials for rechargeable lithium-ion batteries with high-rate capabilities, as well as long-term cycling life. At a current density as high as 3 A g?1, CNSs can still deliver a reversible capacity of 160 mA h g?1, which is about six times larger than that of graphite and three times larger than that of multi-wall carbon nanotubes under the same current density. After hundreds of cycles, there is no significant capacity loss for CNSs at both low and high current densities. The much improved electrochemical performances could be attributed to the nanometer-sized building blocks as well as the unusual spring-like morphology.  相似文献   

17.
Nanostructured PtRu material has been successively synthesized via chemical co-reduction of hexachloroplatinic acid and ruthenium trichloride using three-dimensional (3D) hexagonal mesoporous SBA-12 silica as a solid template, and has been studied as an electrocatalyst toward methanol electro-oxidation. The ordered nanostructure of the PtRu particles has been disclosed by transmission electron micrographs and is characterized by regular pores of ca. 3.0 ± 0.3 nm in diameter separated by walls of ca. 3.0 ± 0.3 nm thick. X-ray diffraction and energy dispersive X-ray spectroscope studies indicate that the PtRu material comprises of complicated phases rather than a single alloy phase of Pt and Ru. The specific electrochemical surface area of the nanostructured powder measured using both CO and underpotential deposited Cu stripping techniques is 74–78 m2 g–1, higher than that of unsupported precious metal catalysts prepared using standard techniques. The combination of high surface area and periodic nanostructure of the templated PtRu makes it an interesting promising fuel cell electrocatalyst. This has been demonstrated by the high activity of the templated PtRu towards the methanol electrooxidation. Therefore the solid template route based on 3D mesoporous silica with controlled pore size and high pore interconnectivity provides an interesting alternative to produce promising high-surface-area electrode materials.  相似文献   

18.
A simple and effective fabrication scheme involving sequential electrophoretic depositions of polystyrene (PS) microspheres (500 nm and 1 μm in diameter) and SiO2 sols (~ 5 nm in diameter) to produce large-area ordered macroporous SiO2 inverse opals (2 × 2 cm2) on ITO substrates is demonstrated. The zeta potentials for PS microsphere suspension and SiO2 sols are measured to determine an optimized processing window in which both samples carry negative surface charges and sol-gel transformation can be properly implemented. Our approach entails the electrophoresis of PS microspheres to render a colloidal crystal with negligible defects. Afterward, SiO2 sols are infiltrated to the interstitial voids among the closely-packed PS microspheres via another electrophoresis process, followed by an oxidation treatment to remove the PS colloidal template and complete the densification of SiO2 gels. The resulting SiO2 inverse opals reveal impressive surface uniformity and structural integrity. Fourier transform infrared spectroscopy confirms the complete removal of PS microspheres, leaving an intact SiO2 skeleton, whereas X-ray diffraction pattern indicates its amorphous nature.  相似文献   

19.
In this study, well-ordered and vertically-aligned nickel nanowires (NiNWs) with a controllable length were grown inside the nanopores of anodic alumina oxide templates (AAOTs) using a simple electrochemical deposition (ECD) method. The electron field emission characteristics of the prepared NiNWs within AAOTs with two pore diameters (100 and 200 nm) and length in the range of 2.7–22 μm were measured and discussed. The turn-on field/the enhancement factor of 8.5 and 7-μm-long NiNWs prepared within 100 and 200 pore diameter AAOTs, respectively, were about 3.46 V/μm/17,621 and 4.8 V/μm/5001, respectively, according to I–V measurements.  相似文献   

20.
Formation of CdS quantum dots (Q dots) on the vertically aligned ZnO nanorods electrode was carried out by chemical bath deposition. The diameter and thickness of ZnO nanorods are ~100–150 nm and ~1.6 μm, respectively, and CdS Q dots on ZnO nanorods have a diameter of smaller than 15 nm. In application of the Q dots-sensitized solar cells, composite film exhibited a power conversion efficiency of 0.54% under air mass 1.5 condition (80 mW/cm2), and incident-photon-to-current conversion efficiency showed 18.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号