首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new chiral bidentate N-heterocyclic carbene (NHC) ligand has been designed and synthesized. The NHC ligand bears a chiral diamine backbone and an achiral biphenol group; upon metal complexation (derived from Ag(I), Ru(II), or Cu(II)), the diamine moiety induces >98% diastereoselectivity such that the biaryl unit coordinates to the metal center to afford the desired complex as a single atropisomer. Because the ligand does not require optically pure biaryl amino alcohols, its synthesis is significantly shorter and simpler than the related first generation ligands bearing a chiral binaphthyl-based amino alcohol. The chiral NHC ligand can be used in the preparation of highly effective Ru- and Cu-based complexes (prepared and used in situ from the Ag(I) carbene) that promote enantioselective olefin metathesis and allylic alkylations with scope that is improved from previously reported protocols. In many cases, transformations promoted by the chiral NHC-based complexes proceed with higher enantioselectivity and reactivity than was observed with previously reported complexes.  相似文献   

2.
Berkowitz DB  Wu B  Li H 《Organic letters》2006,8(5):971-974
[STRUCTURE: SEE TEXT] Pd(II)-mediated rearrangement of allylic N-PMP (p-methoxyphenyl) trifluoroacetimidates provides the first formal sigmatropic route to quaternary, alpha-vinylic amino acids, potential suicide substrates for PLP enzymes. The amino acid side chains enter via transition-metal-mediated C-C bond constructions, including (i) Cu(I)-mediated conjugate addition (Ala); (ii) Pd(0)/AsPh3-mediated Stille coupling (allyl-Gly, Phe, DOPA, m-Tyr); and (iii) Pd(0)/Pt-Bu3-mediated Negishi coupling (Leu). In the synthesis of the DOPA decarboxylase inactivator, alpha-vinyl-m-tyrosine, the new N-PMP trifluoroacetimidate rearranges much more efficiently than the corresponding trichloroacetimidate.  相似文献   

3.
A new chiral derivatizing reagent, dehydroabietylisothiocyante (DHAIC), was synthesized and used for the enantiomeric separation of chiral compounds in capillary electrophoresis (CE). The synthetic route to obtain DHAIC is described. The separation conditions for the chiral separation of several chiral compounds, such as protein amino acids and chiral drug DOPA were optimized. Best results for the chiral separation of DHAIC derivatized amino acids and DOPA were obtained in a running buffer consisted of 50 mM borate (pH 9.5), 5 mM sodium dodecyl sulphate (SDS) and 20% acetonitrile for amino acids and 60 mM Na2HPO4 (pH 8.0), 17 mM SDS and 25% acetonitrile for DOPA. Under the conditions studied, chiral separation of five amino acids including Ser, Val, Ala, Thr, Cys and a chiral drug DOPA as their diastereomeric DHAIC derivatives has been achieved by micellar electrokinetic chromatography (MEKC).  相似文献   

4.
The enantioselectivity of the self-assembled monolayer (SAM) of homocysteine formed on the (111)-oriented gold surface was investigated. We analyzed the redox behavior of 3,4-dihydroxyphenylalanine (DOPA), which is an electrochemically active chiral molecule, by means of cyclic voltammetry at a gold electrode modified with one enantiomeric form of homocysteine. It was demonstrated that the homocysteine SAM of one enantiomeric form blocked the redox reaction of only one enantiomer of DOPA, with cross inversion for the other enantiomer, in acidic solution.  相似文献   

5.
Diastereomeric proton-bound [1(L)HA]+ complexes between selected amino acids (A=phenylglycine (Phg), tryptophan (Trp), tyrosine methyl ester (TyrOMe), threonine (Thr), and allothreonine (AThr)) and a chiral amido[4]resorcinarene receptor (1(L)) display a significant enantioselectivity when undergoing loss of the amino acid guest A by way of the enantiomers of 2-aminobutanes (B) in the gas phase. The enantioselectivity of the B-to-A displacement is ascribed to a combination of thermodynamic and kinetic factors related to the structure and the stability of the diastereomeric [1(L)HA]+ complexes and of the reaction transition states. The results of the present and previous studies allow classification of the [1(L)HA]+ complexes in three main categories wherein: i) guest A does not present any additional functionalities besides the amino acid one (alanine (Ala), Phg, and phenylalanine (Phe)); ii) guest A presents an additional alcohol function (serine (Ser), Thr, and AThr); and iii) guest A contains several additional functionalities on its aromatic ring (tyrosine (Tyr), TyrOMe, Trp, and 3,4-dihydroxyphenylalanine (DOPA)). Each category exhibits a specific enantioselectivity depending upon the predominant [1(L)HA]+ structures and the orientation of the 2-aminobutane reactant in the relevant adducts observed. The results may contribute to the understanding of the exceptional selectivity and catalytic properties of enzyme mimics towards unsolvated biomolecules.  相似文献   

6.
The first chemical method for resolution of N,C‐unprotected β‐amino acids was developed through enantioselective formation and disassembly of nickel(II) complexes under operationally convenient conditions. The specially designed chiral ligands are inexpensive and can be quantitatively recycled along with isolation of the target β‐substituted‐β‐amino acids in good yields and excellent enantioselectivity. The method features a broad synthetic generality including β‐aryl, β‐heteroaryl, and β‐alkyl‐derived β‐amino acids. The procedure is easily scaled up, and was used for the synthetically and economically advanced preparation of the anti‐diabetic drug sitagliptin.  相似文献   

7.
In this paper we report a study on the mechanism of the enantiomeric separation of unmodified D,L-amino acids in RP-HPLC by copper(II) complexes of two tetradentate diaminodiamido ligands, (S,S)-N,N'-bis(phenylalanyl)ethanediamine (PheNN-2) and (S,S)-N,N'-bis(methylphenylalanyl)ethanediamine (Me2PheNN-2), added to the eluent. The aim is to investigate whether and how a copper(II) complex with no free equatorial positions can perform chiral discrimination of bidentate analytes such as unmodified amino acids. The problem is approached in a systematic way by: (a) varying the different chromatographic parameters (pH, selector concentration, eluent polarity); (b) performing chiral separation with the selector adsorbed on the stationary phase; (c) studying the ternary complex formation of these ligands with D- and L-amino acids in solution by glass electrode potentiometry and electrospray ionization MS. All the experimental data are consistent with a mechanism of chiral recognition, based on ligand exchange, which involves as selectors the species [Cu2L2H(-2)]2+ and [CuLH(-2)] and proceeds by displacement of two binding sites from the equatorial positions, giving rise to the ternary species [CuLA]+ and [CuLH(-1) A]. The most important factor responsible for chiral discrimination seems to be the affinity of the diastereomeric ternary complexes for the stationary phase since no enantioselectivity is observed in solution.  相似文献   

8.
The direct stereoselective addition of an activated imine to beta-keto phosphonates in the presence of chiral Lewis acid complexes is developed. The evaluation of different activated imines shows that an N-tosyl-alpha-imino ester adds in a diastereo- and enantioselective fashion to beta-keto phosphonates activated by especially chiral copper(II)-bisoxazoline complexes. An evaluation of Lewis acids, chiral ligands and reaction conditions, such as solvent, bases and other additives, shows that high yields, moderate diastereoselectivity and good enantioselectivity are obtained. The scope of the reaction is demonstrated for the reaction of beta-keto phosphonates and finally, the mechanism for the catalytic stereoselective step is presented.  相似文献   

9.
《Tetrahedron: Asymmetry》2004,15(13):2045-2049
The enantioselective transport of amino acids as their sodium and potassium salts has been investigated by optically active diaza crown ethers. The reversed enantioselectivity of chiral crown ether 1 was observed.  相似文献   

10.
A dual‐functional metallogel, which was based on the copper(II) complex of quinolinol‐substituted L ‐glutamide, showed both redox‐responsive and enantioselective properties; moreover, the metallogels collapsed into a sol after reduction and could be revived upon subsequent oxidation. The supramolecular chirality and morphology also reversible changed with the gel–sol transition. Furthermore, the metallogels showed new enantioselective recognition towards chiral aromatic amino acids. A new emission band in the blue‐light region at around 393 nm appeared when the metallogels encountered L ‐aromatic amino acids, whereas no new emission band was observed for the corresponding D ‐aromatic amino acids. Such enantioselectivity only occurred in the gel state. No similar phenomenon could be observed in solution. This result suggested that, during the gel formation, the gelator molecules self‐assembled into ordered, chiral supramolecular structures and enhanced the enantiorecognition of the L ‐aromatic amino acids.  相似文献   

11.
New unsymmetrical chiral Co(II) salen complexes were synthesized and the efficiency of these catalysts was examined in the enantioselective reduction of aromatic ketones. The higher level of enantioselectivity was attainable over chiral Co(II) salen complexes prepared from salicylaldehyde and 2-formyl-4,6-di-tert-butylphenol derivatives.  相似文献   

12.
Yang X  Liu X  Shen K  Zhu C  Cheng Y 《Organic letters》2011,13(13):3510-3513
A novel chiral Perazamacrocyclic fluorescent sensor (1) was designed and synthesized. It can serve as a fluorescent turn-off sensor with high selectivity toward Cu(II) among 14 metal ions. Furthermore, though 1 exhibits no enantioselectivity, after adding Cu(II), the in situ generated Cu(II)-containing complex of 1 (Cu(II)-1) can exhibit remarkable fluorescent enhancement responses and considerable enantioselectivities toward unmodified α-amino acids in protic solutions via a ligand displacement mechanism; i.e. a cascade recognition of Cu(II) and unmodified α-amino acids has been achieved.  相似文献   

13.
A catalytic enantioselective desymmetrization of meso-N-p-nitrobenzoylaziridines with TMSCN was developed using a chiral gadolinium catalyst generated from Gd(OiPr)3 and d-glucose-derived ligand 1. In this reaction, the addition of a catalytic amount of trifluoroacetic acid (TFA) improved enantioselectivity. High enantioselectivity was obtained from a range of meso-aziridines at 0-60 degrees C. The product could be easily transformed into beta-amino acids. Thus, the developed catalytic enantioselective desymmetrization reaction allowed for efficient catalytic synthesis of chiral cyclic beta-amino acids. The incorporation of TFA into the catalyst complex was observed using ESI-MS. Generation of this new complex might be the origin of the improved enantioselectivity.  相似文献   

14.
A series of α-amino amides derived from natural amino acids (alanine, valine, phenylalanine, isoleucine, and phenylglycine) have been synthesized and fully characterized. Their Ni(II) complexes prepared from Ni(acac)2 catalyze the enantioselective conjugate addition of diethylzinc to chalcones in high yields and in good enantioselectivities (up to 84%). The side chain of the amino acid and the substituents in the amide nitrogen govern the enantioselectivity of the catalytic process.  相似文献   

15.
Ruthenium(II) chiral Schiff base complexes 1–10 and their precursor ligands derived from -amino acids viz. -leucine, -histidine with salicylaldehyde, 3-tertiary-butyl-, 3,5-di-tertiary-butyl-, 3,5 dichloro- and 3,5-dinitrosalicylaldehyde are reported. The characterization of the ligands and complexes was accomplished by various appropriate physico-chemical studies, namely, microanalysis, IR-, UV/Vis-, 1H, 31P{1H} NMR, CD spectroscopy, optical rotation, conductance measurement and cyclic voltammetry. The complexes thus synthesised were used as catalysts for enantioselective epoxidation of 1,2-dihydronaphthalene. The effect on enantioselectivity and chemical conversions to epoxide were studied in different solvents viz. acetonitrile, dichloromethane and fluorobenzene along with change of the substituents on ligands and different terminal oxidants. The less polar nature of solvent as well as the donating group attached on the catalysts favours enantioselectivity, while PhIO was the oxidant of choice. The enantiomeric excess of the resulting epoxide was evaluated by chiral cyclodex BDA capillary column.  相似文献   

16.
Zheng ZX  Lin JM  Qu F  Hobo T 《Electrophoresis》2003,24(24):4221-4226
D-Penicillamine is demonstrated for the first time as a chiral ligand for the enantioseparation of dansyl amino acids based on ligand-exchange micellar electrokinetic chromatography (LE-MEKC). Copper(II) was used as the central ion in the ternary complex. The effect of surfactant on the resolution was significant. A concentration of 20 mM sodium dodecyl sulfate (SDS) was shown to be necessary for the separation. Other important parameters, such as the concentration ratio of D-penicillamine (D-PEN) to Cu2+, the kind of metal central ion, the type and pH value of buffer, were also investigated. N-Acetyl-D-penicillamine and L-valine (Val), with similar structure to D-penicillamine, were applied as their copper(II) complexes as chiral selector and the chiral recognition mechanism is briefly discussed. Under optimum experimental conditions, i.e., 20 mM NH4OAc, pH 6.5, a 2:1 concentration ratio of D-penicillamine to Cu(II), 4 mM CuSO4 and 8 mM D-penicillamine, the chiral separation of eight pairs of different dansyl amino acid enantiomers was accomplished with resolution ranging from 1.1 to 5.9. When L-PEN was used instead of D-PEN, reversal of the migration order was observed.  相似文献   

17.
This paper reviews the mixed chelation approach to resolution of the optical isomers of D and L dansyl amino acids by high performance liquid chromatography. The use of eluants containing Cu(II) complexes of L-proline, L-arginine, L-histidine, and L-histidine methyl ester effected the separation of many D and L amino acids, including those with aliphatic, polar, and aromatic substituents. The mechanism of separation, which is based on the preferential ternary complex formation of the analyte amino acid and the chiral chelate with Cu(II) in the mobile phase, is discussed. The stereoselectivity depends mainly on the different steric interactions between the alkyl side chains of the amino acid analytes and the chiral ligands coordinating around Cu(II), although such parameters as pH, temperature, organic modifier, and concentration of the chiral additive also affect the chromatographic separation. Among the chiral ligands studied, L-histidine methyl ester is unique in that it possesses both achiral selectivity for the dansyl amino acids and chiral selectivity for the respective D and L enantiomers. With a mobile phase gradient of acetonitrile in a buffer containing Cu(II) L-histidine methyl ester complex, a stereoselective procedure was devised for the analysis of D and L amino acid enantiomers, achieving the separation that the current amino acid analyzer could not perform. Finally, the use of the mixed chelation approach in two biomedical studies is described. In the first application, the histidine methyl ester gradient was adapted for analyzing amino acids in cerebrospinal fluid; in the second, an L-aspartame Cu(II) complex eluant was developed for measuring the urine concentration of D and L pipecolic acid (piperidine-2-carboxylic acid), a metabolite of lysine.  相似文献   

18.
Enantioseparation of N-tert.-butyloxycarbonyl amino acids (N-t-Boc-Aas) with teicoplanin chiral selector was performed in two different separation systems: A teicoplanin-based chiral stationary phase (CSP-TE) was used in reversed-phase HPLC, and the same chiral selector (CS) was added into a background electrolyte (BGE) in HPCE. The enantioselective interaction with the same CSP/CS can be influenced by several factors, such as mobile phase/background electrolyte composition: the buffer concentration, pH, the CS concentration, the presence of organic modifiers. In addition, the charge of the chiral selector related to the charge of the analyte and to EOF are important variables in CE. The effect of these parameters on enantioselectivity and enantioseparation of selected N-t-Boc-Aas was studied. The presence of a sufficient concentration (1% solution) of a triethylamine acetate buffer in the mobile phase was shown to be essential for enantioseparation of these blocked amino acids in HPLC. A certain concentration of teicoplanin aggregates (along with teicoplanin molecules) in the BGE is required to obtain enantioseparation of N-t-Boc-Aas in HPCE.  相似文献   

19.
L-Tyrosine and iodinated L-tyrosines, i.e., 3-iodo-L-tyrosine and 3,5-diiodo-L-tyrosine, are successfully used as chiral references for the chiral discrimination of aliphatic, acidic, and aromatic amino acids. Chiral discrimination is achieved by investigating the collision-induced dissociation spectra of the trimeric complex [Cu(II)(ref)(2)(A) - H](+) ion generated by electro spraying the mixture of D- or L-analyte amino acid (A), chiral reference ligand (ref) and M(II)Cl(2) (M = Ni and Cu). The relative abundances of fragment ions resulted by the competitive loss of reference and analyte amino acids are considered for measuring the degree of chiral discrimination by applying the kinetic method. The chiral discrimination ability increases as the number of iodine atom increases on the aromatic ring of the reference and the discrimination is better with Cu when compared with Ni. A large chiral discrimination is obtained for aliphatic and aromatic amino acids using iodinated L-tyrosine as the reference. Computational studies on the different stabilities of the diastereomeric complexes also support the observed differences measured by the kinetic method. The suitability of the method in the measurement of enantiomeric excess over the range of 2% to 100% ee with relative error 0.28% to 1.6% is also demonstrated.  相似文献   

20.
In the presence of a chiral lithium N,P amide, alkylation of benzaldehyde results in an enantioselective formation of 1-phenyl-pentanol. This stereoselective addition reaction has herein been studied using dispersion-corrected density functional theory. For five different chiral ligands originating from amino acids the resulting enantioselectivity has been computationally determined and compared with experimentally available enantiomeric ratios (e.r.). In all cases the experimentally preferred enantiomer could be reproduced by the computational model. The selectivity trend among the ligands was found strongly sensitive to the amount of dispersion correction included. The origin of selectivity in the alkylation reaction is found to be composed of many combined interactions. For the most selective ligand 2A the most important factors found, which are favouring the (R)-TS, are a CH-π interaction between benzaldehyde-dimethyl ether (DME), stronger Li-solvation, and Li-π interactions with the phenyl ring in the backbone of the chiral lithium N,P amide. In addition, solvation by the bulk solvent and the size of the substituent on the nitrogen are also found important factors for the enantioselectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号