首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance (QCM) measurements are used to examine the ability of applied potential to drive the ionic self-assembly of poly(diallyldimethylammonium) chloride (PDDA) onto a substrate modified with a monolayer of 3-mercaptopropionic acid (3-MPA). The potential of zero charge (PZC) of the gold electrode modified with a monolayer of 3-MPA was found by differential capacitance measurements to be -0.12 (+/-0.01) V versus Ag-AgCl. Changing the substrate potential to values positive (-0.01 V vs Ag-AgCl) of the PZC induces interfacial conditions that are favorable for the electrostatic deposition of cationic polymers onto the surface of 3-MPA monolayers. This result is also consistent with experimental observations obtained when the 3-MPA-modified substrate is exposed to 0.10 mol L (-1) NaOH solutions. When potentials equal or negative to the PZC are applied to the substrate, no significant accumulation of the PDDA is found by either QCM or EIS measurement. This result is consistent with results obtained when the 3-MPA modified substrate is exposed to 0.10 mol L (-1) HCl solutions where no PDDA adsorption is expected because the monolayer is neutral under these conditions. Changes in the impedance and quartz crystal frequency obtained after potential is applied to the substrate are interpreted in terms of the applied potential creating interfacial conditions that are favorable for the deprotonation of the terminal carboxylic acid groups and the subsequent electrostatic assembly of the polycation onto the negatively charged monolayer.  相似文献   

2.
This work reports the fabrication and characterization of multilayered gold nanoparticle (AuNP) thin films on aminosilane functionalized substrates. The films are fabricated via layer-by-layer (LbL) assembly using as-synthesized, un-modified AuNPs and poly(allylamine hydrochloride) as the building blocks. While most literature reports that AuNP based LbL assemblies are constructed with a single interlayer binding force, this work shows that both coordination and electrostatic interaction are involved in the process of assembly based on X-ray photoelectron spectroscopic results. The stepwise film growth behavior is demonstrated by atomic force spectroscopy and UV-vis spectroscopy. It is found that the particles agglomerate with each other and form large clusters when the number of assembled layers increases.  相似文献   

3.
Self-organization of large gold nanoparticle arrays   总被引:3,自引:0,他引:3  
  相似文献   

4.
Gold nanoparticle films are assembled on glass and quartz substrates by a simple and highly efficient layer-by-layer deposition procedure that uses only commercially available cationic polymers. The film samples are then modified by heat curing in the temperature range of 25–1100 °C. The changes in the film conductance and colour with the curing temperature are related to the respective changes in micro-morphology of films on quartz as observed by scanning electron microscopy. In addition, we have demonstrated that the heat curing can embed the gold nanoparticle layer in the glass substrates. Because of the preparation simplicity and peculiar properties of these films, they could be used in various practical applications.  相似文献   

5.
We study the dipolar coupling of gold nanoparticles arranged in regular two-dimensional arrays by extinction micro-spectroscopy. When the interparticle spacing approaches the plasmon resonance wavelength of the individual particles, an additional band of very narrow width emerges in the extinction spectrum. By systematically changing the particles dielectric environment, the particles shape, the grating constant and angle of incidence, we show how this band associated to a grating induced-resonance can be influenced in strength and spectral position. The spectral position can be qualitatively understood by considering the conditions for grazing grating orders whereas the strength can be related to the strength of dipolar scattering from the individual particles.  相似文献   

6.
7.
In this Article, we report on the assembly of hybrid Au@PNIPAM core-shell particles at the air/water interface, their transfer onto solid substrates, and the controlled combustion of the organic material to produce arrays of gold nanoparticles. A detailed investigation on the assembly behavior of such soft hybrid colloids at the air/water interface was performed by correlating the surface pressure-area isotherms with SEM and AFM images from samples transferred at different surface pressures. The hybrid particles display a complex behavior at the interface, and we could distinguish three distinct phases with varying interparticle spacings at different compression. The transfer process presented enables the decoration of topologically structured substrates with gold nanoparticle arrays, and the order of the initial monolayers is retained in the arrays of inorganic gold nanoparticles. The change in monolayer morphology upon compression can therefore be used to tailor the interparticle distance between approximately 650 and 300 nm without exchanging the colloids. More sophisticated gold nanostructures can be patterned into symmetric arrays using a similar protocol, which we demonstrate for nanostars and nanorods.  相似文献   

8.
We investigate the photoconductance properties of oligo(phenylene vinylene) (OPV) molecules in metal-molecule-metal junctions. The molecules are electrically contacted in a two-dimensional array of gold nanoparticles. The nanoparticles in such an array are separated by only few nanometers. This allows to bridge the distance between the nanoparticles with molecules considered as molecular wires such as OPV. We report on the photoconductance of electrically contacted OPV upon resonant optical excitation of the molecules. This resonant photoconductance is sublinear in laser intensity, which suggests that trap state dynamics of the optically excited charge carriers dominate the optoelectronic response.  相似文献   

9.
An interconnected Au nanoparticle arrangement is obtained by electrodeposition from Au(III) soluble complexes within the pore system of block-copolymer templated mesoporous titania films. The resulting Au@TiO2 nanocomposites (5 nm Au particles, 5.5 nm amorphous titania walls) have the electrochemical behavior of a gold electrode of high surface area. The attenuation of Au surface plasmon due to -OH electroadsorption and the existence of mixed localized states in these Au@TiO2 nanocomposites are observed by in situ spectroelectrochemistry.  相似文献   

10.
11.
The electrochemical reductive desorption of the self-assembled monolayers of 3-mercaptopropionic acid in an aqueous alkaline solution gives a sharp peak with the full width at half maximum of about 20 mV irrespective of the type of cations in a linear scan voltammogram. This suggests that a strong attractive interaction exists between negatively charged carboxylate groups in the self-assembled monolayer surface due to the counterion binding, which not only simply stabilizes the adsorbed carboxylates but also makes the interaction between the adsorbed thiolates even attractive possibly by forming a two-dimensional ionic crystal. The effect of tetraalkylammonium ions on the shape of the voltammograms was also examined. Dedicated to Professor Oleg Petrii on the occasion of his 70th birthday.  相似文献   

12.
Patterned arrays of gold nanoparticles were fabricated using a simple dipping method that makes use of their specific interactions with nano-domains of carboxylic acid on a block copolymer template. Polystyrene-block-poly(tert-butyl acrylate) on the SU-8 photoresist pattern was selectively transformed to polystyrene-block-poly(acrylic acid). Au nanoparticles are selectively immobilized on the resulting carboxylic acid patterns to produce well-defined patterned Au nanoparticle arrays. This stable and robust template can be used to obtain any patterned nonaggregated metal or inorganic nanoparticle arrays.  相似文献   

13.
The optical and electrical properties of 11-20 nm thick films composed of approximately 4 nm gold nanoparticles (Au-NPs) interlinked by six organic dithiol or bis-dithiocarbamate derivatives were compared to investigate how these properties depend on the core of the linker molecule (benzene or cyclohexane) and its metal-binding substituents (thiol or dithiocarbamate). Films prepared with the thiol-terminated linker molecules, (1,4-bis(mercaptomethyl)benzene, 1,4-bis(mercaptomethyl)cyclohexane, 1,4-bis(mercaptoacetamido)benzene, and 1,4-bis(mercaptoacetamido)cyclohexane), exhibit thermally activated charge transport. The activation energies lie between 59 and 71 meV. These films show distinct plasmon absorption bands with maxima between 554 and 589 nm. In contrast, the film prepared with 1,4-cyclohexane-bis(dithiocarbamate) has a significantly red-shifted plasmon band ( approximately 626 nm) and a pronounced absorbance in the near infrared. The activation energy for charge transport is only 14 meV. These differences are explained in terms of the formation of a resonant state at the interface due to overlap of the molecular orbital and metal wave function, leading to an apparent increase in NP diameter. The film prepared with 1,4-phenylene-bis(dithiocarbamate) exhibits metallic properties, indicating the full extension of the electron wave function between interlinked NPs. In all cases, the replacement of the benzene ring with a cyclohexane ring in the center of the linker molecule leads to a 1 order of magnitude decrease in conductivity. A linear relationship is obtained when the logarithm of conductivity is plotted as a function of the number of nonconjugated bonds in the linker molecules. This suggests that nonresonant tunneling along the nonconjugated parts of the molecule governs the electron tunneling decay constant (beta(N)(-)(CON)), while the contribution from the conjugated parts of the molecule is weak (corresponding to resonant tunneling). The obtained value for beta(N)(-)(CON) is approximately 1.0 (per non-conjugated bond) and independent of the nanoparticle-binding group. Hence, the molecules can be viewed as consisting of serial connections of electrically insulating (nonconjugated) and conductive (conjugated) parts.  相似文献   

14.
A protocol for cluster size distribution analysis was developed in order to parametrize local two-dimensional (2D) order in a quantitative manner, using mean cluster sizes and fractional hcp cluster formation (fhcp). Cluster size analysis was performed on 2D arrays of Au nanoparticles encapsulated in resorcinarene tetrathiol, which were organized into close-packed films at aqueous interfaces. The degree of monolayer formation and 2D order within the self-assembled nanoparticle arrays was observed to be strongly dependent on the amount and type of electrolyte (chloride and/or citrate) adsorbed on the nanoparticle surface, prior to encapsulation and extraction to the solvent interface. Increasing the concentration of adsorbed electrolyte could promote monoparticulate film formation but had a variable effect on local 2D order.  相似文献   

15.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

16.
A novel copper hexacyanoferrate (CuHCF) film modification on cysteamine (Cys)-gold nanoparticle (AuNp) graphite-wax (GW) composite electrode was achieved for the quantitative determination of L-Tryptophan (L-Trp) at a reduced overpotential of 400mV in comparison with the bare Cys-AuNp-GW composite electrode. This modified electrode exhibited a well resolved pair of redox peaks corresponding to the hexacyanoferrate (II/III) reactions of CuHCF film at a formal potential of 0.65 V at a scan rate of 20 mV s(-1). Electrochemical impedance spectroscopy (EIS) studies with the modified electrode showed a very low charge transfer resistance to the electron transfer kinetics of Fe(II)/Fe(III) reactions. A linear range of 8.5×10(-7) M to 1.2×10(-4) M with a detection limit of 1.85×10(-8) M was achieved for the determination of L-Trp with a sensitivity of 0.1198 μA/μM. The influence of ultrasonication on the stability of the CuHCF film modified electrode was investigated. In addition, the CuHCF film modified electrode displayed an excellent reproducibility towards the real time analysis of L-Trp in commercial milk samples.  相似文献   

17.
Two different tyrosine derivatives, one with the OH group free and one with the OH group phosphorylated, linked to 3-mercaptopropionic acid through an amide bond are adsorbed to gold surfaces. The adsorbates are studied by means of X-ray photoelectron spectroscopy (XPS) and infrared reflection-absorption spectroscopy (IRAS). The techniques are used to investigate the coordination to the surface and the molecular orientation of adsorbates relative to the surface. Molecular surface interactions, causing chemical shifts in the core level XPS spectra of the adsorbates on gold, are investigated using multilayer films as references. Angle-dependent XPS, XPS(theta), and IRAS are used to estimate molecular orientation relative to the surface. The tyrosine derivatives adsorb chemically to the surface through the sulfur atoms and highly organized monolayers are formed with the OH and the PO(2-)(3) exposed to the air/vacuum interface.  相似文献   

18.
A tiny amount of Pt was deposited in a quasi-two-dimensional form onto the nanoporous gold (NPG) substrate through a simple immersion-electrodeposition (IE) method, forming nanostructured bimetallic Pt-Au catalysts. Such Pt-Au nanostructures have much higher structural stability than the bare NPG; moreover, they exhibit better catalytic activity and stronger poison resistance than commercial Pt-Ru catalysts because of the synergistic effect of the bimetallic compositions.  相似文献   

19.
Nucleic acid nanostructures are useful as templates for bionanofabrication of composite molecular nanostructures in materials science, molecular electronics, and biosensing. Here, we demonstrate that terminal deoxynucleotidyl transferase, which repetitively adds mononucleotides to the 3' end of a short DNA initiator, can be used to rapidly fabricate DNA nanostructures up to 121 nm high with lateral dimensions from 0.1 to 4 mum in 2 h. These programmable scaffolds can potentially be employed to build more complex nanostructures consisting of natural or unnatural nucleotides with selective docking sites along the single-stranded DNA.  相似文献   

20.
Electroactive self-assembled monolayers (SAMs) of macrocyclic Ni(II) complex (1) were fabricated on gold electrode and its electrochemistry has been studied in different supporting electrolytes. Substantial stabilization of tervalent nickel and a significant negative shift of formal potential of the Ni(3+/2+) couple have been observed when the supporting electrolyte is changed from nitrate to phosphate. Coordination of supporting electrolyte anion with the Ni(III) complex shifts the formal potential and thus tervalent nickel is stabilized. SAM of 1 electrode shows an excellent electrocatalytic activity towards the oxidation of NADH in aqueous NaNO3 solution, whereas it scarcely catalyzes the oxidation of NADH in aqueous phosphate buffer solution. The electrocatalytic oxidation of NADH in Na2SO4 solution is less efficient than that in NaNO3 solution. The anion-dependent electrocatalysis has been discussed on the basis of the difference in the coordinating ability of the anions with the tervalent nickel centers. Steady-state current has been measured for the oxidation of NADH and it was proportional to the concentration of NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号