首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yuanlie Yu  Junyan Zhang   《Solid State Sciences》2009,11(11):1929-1932
Palladium (0) nanoparticles incorporated hydrogenated amorphous carbon (Pd/a-C:H) films were synthesized on single crystal silicon (100) substrates by electrochemical deposition route using methanol and camphor as carbon source, and Pd nanoparticles as dopant. The characterization results indicate that Pd nanocrystalline particles with diameter in the range of 1–5 nm dispersed in the amorphous carbon matrix. Compared with pure a-C:H films, the introduction of Pd nanoparticles didn't change the structure of carbon films. At the end, the growth mechanism of the Pd/a-C:H composite films was discussed.  相似文献   

2.
A new series of carbon-based films doped with graphene oxide and cobalt (G-Co/a-C:H films) were successfully prepared on Si substrate via one-step electrochemical deposition of methanol as the carbon source and graphene oxide/cobalt as the dopant. G-Co/a-C:H films were fabricated at various graphene oxide concentration for comparative experiments. It can be found that the graphene oxide and cobalt were well embedded in amorphous carbon matrix to form superhydrophobic G-Co/a-C:H film at the doping GO concentration of 0.007 mg/mL, which was confirmed by transmission electron microscopy (TEM). It was noted that the superhydrophobicity of the resulting surface derives from its rough surface with hierarchical micro-nanostructures and the presence of the low-surface-energy GO components on it. The hierarchical micro-nanostructures are attributed to the corporate joint of GO and cobalt to form the multilevel nanoscale composite interface. Specially, the as-fabricated superhydrophobic G-Co/a-C:H film could exhibit excellent self-cleaning ability and corrosion resistance, revealed by the self-cleaning and corrosion tests.  相似文献   

3.
One of the many applications of diamond like carbon (DLC) is the biocompatible coating of medical tools and implants. The most recent field of interest concerns the generation of antimicrobial activity in combination with the excellent wear resistance and biocompatibility of DLC. As has already been shown for polymers, nanoparticles of silver or copper within a carbonacious matrix have a bactericidal effect.In this work we describe a new technique to produce amorphous hydrogenated carbon films (a-C:H), which contain nanometer sized clusters of silver or copper. The hybrid deposition process is based on sol–gel synthesis of polymer films and subsequent ion-induced densification and cross-linking to form a-C:H. By thermal or UV-induced reduction of metal salts in polymer solution, colloidal metal particles are produced. In this way polymer films, already containing noble metal nanoclusters, can be deposited in a wet chemical step. Upon sol–gel deposition, the polymer is subjected to ion irradiation. Based on earlier results, the influence of ion energy on chemical and mechanical properties, as well as bonding structure is investigated. Special attention is also dedicated to ion-induced diffusion and growth as well as oxidation effects.  相似文献   

4.
采用液相电化学方法在硅基底上制备了石墨烯掺杂的类金刚石碳复合薄膜,探讨了电化学沉积复合薄膜的机理。利用扫描电子显微镜(SEM)、拉曼光谱(Raman)、透射电子显微镜(TEM)和傅里叶变换红外(FTIR)光谱技术对薄膜表面形貌和微观结构进行了分析表征。结果表明,石墨烯片均匀分散沉积在含氢类金刚石碳(a-C:H)基体中,沉积的石墨烯/类金刚石(G/a-C:H)复合薄膜表面相对均匀平整。场发射测试显示石墨烯掺杂使开启电场从4.7 V·μm-1增加至5.8 V·μm-1,场发射电流密度从384 μA·cm-2显著增加至876 μA·cm-2。  相似文献   

5.
MoS2/a-C:H multilayer film and MoS2/a-C:H composite film exhibit excellent tribological properties in vacuum, which can be used as the potential space lubricant. The radiation-protective properties of these two films in atomic oxygen (AO) are evaluated. The influences of AO radiation on structure, morphology, and tribological properties of the films were investigated. The results show that AO radiation mainly causes oxidation and increases sp2 C content in both of the films. Furthermore, the MoS2 sublayer on the surface of the multilayer film is oxidized heavily, whereas both the MoS2 and the a-C:H matrix on the surface were oxidized in the composite film. As a result of this, the multilayer film exhibits high friction coefficient and short sliding lifetime in vacuum after AO radiation. Compared with that, the composite film exhibits lower friction and longer sliding time more than 3600 seconds in vacuum, which illustrates it has a good AO radiation protection. This indicates that MoS2/a-C:H composite film is more likely to be used as a potential space lubricant.  相似文献   

6.
Owing to the high hardness and hydrogen passivation of carbon bonds, hydrogenated diamond-like carbon (a-C:H) film has shown promising potential to achieve ultra-low friction and wear on steel surfaces. Here, a-C:H film was successfully deposited on 9Cr18Mo steel via programmable high power pulse magnetron sputtering and potential application for industrial was evaluated. The a-C:H films against different mating materials of GCr15 steel balls, Al2O3, Si3N4, ZrO2, and a-C:H-coated GCr15 balls all showed ultra-low friction under a normal load of 5 N in a dry ambient air environment. Among them, self-mating tribo-system a-C:H films on steel surfaces and a-C:H-coated steel balls achieve best friction performance; the principal reason is that both contacting surfaces coated with a-C:H film have the lower electron affinities compared with other tribo-systems. However, the differences of coefficient of friction (COF) for uncoated-GCr15, Al2O3, ZrO2, Si3N4, and a-C:H(GCr15) balls can be attributed to different sizes of clustering in wear debris. This work provides new insights on synthesis and industry application of the a-C:H films with ultra-low friction properties.  相似文献   

7.
In this work, we study the influence of the incorporation of different metals (Me = Au, Ag, Cu, Mo) on the electronic structure of amorphous carbon (a-C:Me) films. The films were produced at room temperature using a species selective bias pulsed dual-cathode arc deposition technique. Compositional analysis was performed with secondary neutral mass spectroscopy whereas X-ray diffraction was used to identify the formation of metal nanoclusters in the carbon matrix. The metal content incorporated in the nanocomposite films induces a drastic increase in the conductivity, in parallel with a decrease in the band-gap corrected from Urbach energy. The electronic structure as a function of the Me content has been monitored by X-ray absorption near edge structure (XANES) at the C K-edge. XANES showed that the C host matrix has a dominant graphitic character and that it is not affected significantly by the incorporation of metal impurities, except for the case of Mo, where the modifications in the line shape spectra indicated the formation of a carbide phase. Subtle modifications of the spectral line shape are discussed in terms of nanocomposite formation.  相似文献   

8.
Diamond like carbon (DLC) coatings are well established for multiple applications. The electrical conductivity of DLC or amorphous carbon can be influenced by several orders of magnitude via doping with different metals. Depending on the deposition process hydrogen may be incorporated as well, thereby decreasing the conductivity. Recent investigations of DLC disclose nice piezoresistive properties.Our work was focused on Ni:a-C:H thin films on different substrates by reactive sputtering from a nickel target. Several carbon precursors were added to the sputtering gas to create an amorphous carbon hydrogen network with embedded crystal clusters. In order to optimize the piezoresistive properties we varied various process parameters. The piezoresistive response was monitored by measuring the resistance change during bending. Our Ni:a-C:H films develop gauge factors of approx. 12 in a wide range of process parameters.For sensor applications the temperature coefficient of resistance (TCR) is important as well. It depends on the metal concentration in the thin film and can be adjusted by the concentration of the incorporated nickel. It can be set to approximately zero in a wide temperature range of 80–400 K. The combination of a high gauge factor and a very small TCR is achieved and described in this paper.XRD measurements reveal nickel or nickel carbide clusters with diameters of approx. 8–30 nm depending on the metal concentration. The clusters crystallize in the hexagonal hcp structure which could be transformed into the cubic fcc structure of nickel by thermal annealing in a vacuum.  相似文献   

9.
Tribological behaviors of three typical kinds of diamond-like carbon (DLC) films (a-C, a-C:Cr, and a-C:H) in sulfuric acid and sodium hydroxide solutions were investigated. The a-C film showed the lowest stable coefficients of friction (COF) in both sulfuric acid and sodium hydroxide solutions but the worst wear resistance in sulfuric acid solution. The a-C:H film showed the highest COF in sulfuric acid solution and the best wear resistance in both sulfuric acid and sodium hydroxide solutions. The a-C:Cr film exhibited superior comprehensive tribological performance in sulfuric acid solution, while in sodium hydroxide solution, high COF and very poor wear resistance was observed. What is more, friction and wear mechanism was revealed by investigating the friction-induced material evolutions on the sliding surface.  相似文献   

10.
Hydrogenated amorphous carbon (a-C:H) films consisting of a top a-C:H layer, a gradient transient a-C:H:Ti layer, and a bottom Ti layer were irradiated by 1.1-MeV C+ ions, resulting in a maximum displacement damage of 1.0 dpa and a projected range inside the Ti layer. Time-of-flight secondary ion mass spectrometry, electron energy loss spectroscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analyses were performed to investigate the compositional and structural transitions of a-C:H films after self-ion irradiation. The results revealed that C+ ions passing through the top a-C:H layer induced C–H fracture and hydrogen diffusion in this layer and then resulted in atomic intermixing in the multilayered adhesion interlayer. After local energy deposition of C+ ions, the initial sharp interfaces in the a-C:H:Ti layer became ambiguous due to interfacial mixing. In addition, titanium carbides formed in the Ti layer, with a gradual phase transition from TiCx to TiC with a diffusion depth of 200 nm. The broken compositional gradients of the adhesion interlayer resulted in a significant decrease in the adhesion strength of the films, which eventually resulted in degraded antiwear properties of the irradiated film in dry sliding tribotests.  相似文献   

11.
Electrical properties of contacts formed between conducting polymers and noble metal nanoparticles have been examined using current-sensing atomic force microscopy (CS-AFM). Contacts formed between electrochemically prepared pi-conjugated polymer films such as polypyrrole (PPy), poly(3-methylthiophene) (P3MeT), as well as poly(3,4-ethylenedioxythiophene) (PEDOT) and noble metal nanoparticles including platinum (Pt), gold (Au), and silver (Ag) have been examined. The Pt nanoparticles were electrochemically deposited on a pre-coated PPy film surface by reducing a platinum precursor (PtCl62-) at a constant potential. Both current and scanning electron microscopic images of the film showed the presence of Pt islands. The Au and Ag nanoparticles were dispersed on the P3MeT and PEDOT film surfaces simply by dipping the polymer films into colloid solutions containing Au or Ag particles for specified periods (5 to approximately 10 min). The deposition of Au or Ag particles resulted from either their physical adsorption or chemical bonding between particles and the polymer surface depending on the polymer. When compared with PPy, P3MeT and PEDOT showed a stronger binding to Au or Ag nanoparticles when dipped in their colloidal solutions for the same period. This indicates that Au and Ag particles are predominantly linked with the sulfur atoms via chemical bonding. Of the two, PEDOT was more conductive at the sites where the particles are connected to the polymer. It appears that PEDOT has better aligned sulfur atoms on the surface and is strongly bonded to Au and Ag nanoparticles due to their strong affinity to gold and silver. The current-voltage curves obtained at the metal islands demonstrate that the contacts between these metal islands and polymers are ohmic.  相似文献   

12.
Nanocomposite Me–C–N:H coatings (Me is TiNb, TiZr or TiAl), with relatively high non-metal/metal ratios, were prepared by cathodic arc method using TiNb, TiZr and TiAl alloy cathodes in a CH4 + N2 atmosphere. For comparison purposes, a-C–N:H films were also produced through evaporating a graphite cathode in a similar atmosphere. The films were characterized in terms of elemental and phase compositions, chemical bonds, texture, hardness, adhesion and friction behavior by GDOES, XPS, Raman spectroscopy and XRD techniques, surface profilometry, hardness and scratch adhesion measurements, and tribological tests. The nanocomposite films consisted of a mixture of crystalline metal carbonitride and amorphous carbon nitride. The non-metal/metal ratio in the films composition was found to range between 1.8 and 1.9. For the metal containing nanocomposites, grain size in the range 7–23 nm, depending on the metal nature, were determined. As compared with the a-C–N:H, the Me–C–N:H films exhibited a much higher hardness (up to about 39 GPa for Ti–Zr–C–N:H) and a better adhesion strength, while the coefficients of friction were somewhat higher (0.2–0.3 for Me–C–N:H and 0.1 for a-C–N:H).  相似文献   

13.
Coating films containing Au, Ag, Pt and Pd metal colloids have been prepared by sol-gel processing. It is shown that for oxide films the temperature where the metal particles are precipitated by heating in air depends on metal species: 200°C for Au, 600°C for Ag, 800°C for Pt and 1000°C for Pd. The use of reducing atmosphere lowers the temperature for formation of noble metal colloids. This procedure can be used for direct formation of metal colloids from metal ions in the film as well as reduction of oxide particles to metal particles in the film. For an organic-inorganic matrix, noble metal colloids are precipitated by thermal reduction or photo-reduction. Thermal reduction occurs as a result of reduction by decomposing organic matter. Photo-reduction occurs as a result of UV irradiation.  相似文献   

14.
Heat-assisted magnetic recording (HAMR) is one of the promising ways to extend the magnetic recording area density to 1 Tb·in-2 in hard disk drives (HDDs).High temperature induced by laser heating can cause carbon overcoat (COC) oxidation.Reactive molecular dynamics (MD) simulations are performed to investigate the oxidation process of silicon-doped amorphous carbon (a-C:Si) films for HAMR application.The atomic details of the structure evolution and oxidation process are investigated, and, the oxidation mechanism of the a-C:Si film is clarified.The effect of the duration of laser irradiation on the oxidation of the a-C:Si film is investigated.The oxidation occurs during heating and the beginning of cooling process.Both volume expansion during heating process and cluster of carbon atoms during cooling process increase the rate of sp2 carbon.Because of the decrease in the amount of unsaturated silicon atoms and low diffusion coefficient of atomic oxygen, the oxidation rate of the a-C:Si film decreases with laser irradiation cycles.The molecular oxygen is the oxidant due to surface defect of a-C:Si film.The atomic strains break the O-O bonds in Si-O-O-Si linkages and rearrange the surface oxide layers, and process the oxidation of the a-C:Si film.  相似文献   

15.
Gold nanoparticle and gold/semiconductor nanocomposite thin films have been deposited using aerosol assisted chemical vapor deposition (CVD). A preformed gold colloid in toluene was used as a precursor to deposit gold films onto silica glass. These nanoparticle films showed the characteristic plasmon absorption of Au nanoparticles at 537 nm, and scanning electron microscopic (SEM) imaging confirmed the presence of individual gold particles. Nanocomposite films were deposited from the colloid concurrently with conventional CVD precursors. A film of gold particles in a host tungsten oxide matrix resulted from co-deposition with [W(OPh)(6)], while gold particles in a host titania matrix resulted from co-deposition with [Ti(O(i)Pr)(4)]. The density of Au nanoparticles within the film could be varied by changing the Au colloid concentration in the original precursor solution. Titania/gold composite films were intensely colored and showed dichromism: blue in transmitted light and red in reflected light. They showed metal-like reflection spectra and plasmon absorption. X-ray photoelectron spectroscopy and energy-dispersive X-ray analysis confirmed the presence of metallic gold, and SEM imaging showed individual Au nanoparticles embedded in the films. X-ray diffraction detected crystalline gold in the composite films. This CVD technique can be readily extended to produce other nanocomposite films by varying the colloids and precursors used, and it offers a rapid, convenient route to nanoparticle and nanocomposite thin films.  相似文献   

16.
Composite PEDOT/Au films were obtained by chemical deposition of dispersed gold nanoparticles into PEDOT (poly-3,4-ethylenedioxythiophene) conducting polymer matrix. Morphology of the obtained gold-containing films was studied by SEM and TEM methods. To study the kinetics of the hydrogen peroxide electroreduction that proceeds on glassy carbon electrodes modified with such films, we used phosphate buffer solutions containing addenda of hydrogen peroxide species. It was observed that the electroreduction process takes place on both the gold clusters?? surface and the film surface free of metal inclusions. The rate of the process is higher in the first case and rises with increasing the gold content in modifying films, but in the limit of large gold contents it is limited only by diffusion of hydrogen peroxide species in the bathing solution. A simple theory of such parallel electroreduction is proposed, which appears to allow for quantitative treatment of the obtained results.  相似文献   

17.
The effect of addition of nitrogen or ammonia in an amount equal to the flow of methane entering as a 7: 1 H2/CH4 mixture into a hollow-cathode dc glow flow discharge on the rate of deposition/erosion of amorphous hydrocarbon (a-C:H) films at 300 K has been studied. The introduction N2 or NH3 into the mixture facilitates the transition from deposition to erosion of a-C(N):H films in the hollow cathode, but has a little effect on the growth rate of a-C(N):H films in the positive column and in the afterglow of the discharge. It has been suggested that the changes in the a-C:H film deposition/erosion rate are due to the formation of hydrogen cyanide, mainly, on the hollow-cathode surface.  相似文献   

18.
The electrochemical impedance of thin-film electrodes made of amorphous nitrogen-containing diamondlike carbon (a-C:N:H) in H2SO4 solutions and the kinetics of redox reactions on these electrodes in the Fe(CN) 6 3-/4- system are studied. The amorphous diamondlike carbon films with an admixture of nitrogen are grown by a directed deposition from inductively coupled methane-nitrogen plasma. The films’ resistivity values determined from the ac impedance of a-C:N:H/electrolyte contact practically coincided with those determined from the current-vol.tage curves taken at the a-C:N:H/metal contact. With an increase in the nitrogen : methane ratio in the gas phase, both the electrical resistance and optical bandgap decrease from 3 x 1010 to 5 x 106 ohm cm and from 1.3 to 0.6 eV, respectively. Simultaneously, the concentration of electrically active point-defect centers in a-C:N:H increases significantly and the reaction in the Fe(CN) 6 3-/4- system is facilitated.  相似文献   

19.
Carbon–metal composite thin films were synthesized by a hybrid process combining magnetron sputtering and PECVD in an argon–methane plasma. Titanium was chosen as the target metal. The paper is focused on the impact of three types of deposition process (DC magnetron, RF magnetron or Ionized Physical Vapour Deposition – IPVD) on thin films' deposition and microstructure. The effect of the methane fraction in gas discharge was also studied. Films were analysed by EDX, XPS and XRD. Results indicate steady deposition conditions for RF or IPVD operation whatever the methane fraction in the discharge without any problem of discharge instability commonly observed in DC operation. The presence of TiC crystallites in a-C:H matrix was detected at intermediary methane fraction in discharge whatever the operating mode. Nevertheless, at constant methane fraction in discharge, strong difference between film microstructure and composition was observed according to the operating mode.  相似文献   

20.

Composite PEDOT/Au films were obtained by chemical deposition of dispersed gold nanoparticles into PEDOT (poly-3,4-ethylenedioxythiophene) conducting polymer matrix. Morphology of the obtained gold-containing films was studied by SEM and TEM methods. To study the kinetics of the hydrogen peroxide electroreduction that proceeds on glassy carbon electrodes modified with such films, we used phosphate buffer solutions containing addenda of hydrogen peroxide species. It was observed that the electroreduction process takes place on both the gold clusters’ surface and the film surface free of metal inclusions. The rate of the process is higher in the first case and rises with increasing the gold content in modifying films, but in the limit of large gold contents it is limited only by diffusion of hydrogen peroxide species in the bathing solution. A simple theory of such parallel electroreduction is proposed, which appears to allow for quantitative treatment of the obtained results.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号