首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cobalt(II) hangman porphyrin with a xanthene backbone and a carboxylic acid hanging group catalyzes the electrochemical production of hydrogen from benzoic and tosic acid in acetonitrile solutions. We show that Co(II)H is exclusively involved in the generation of H(2) from weak acids. In a stronger acid, a Co(III)H species is observed electrochemically, but it still needs to be further reduced to Co(II)H before H(2) generation occurs. Overpotentials for H(2) generation are lowered as a result of the hangman effect.  相似文献   

2.
Extended investigation of electrocatalytic generation of dihydrogen using [(mu-1,2-benzenedithiolato)][Fe(CO)3]2 has revealed that weak acids, such as acetic acid, can be used. The catalytic reduction producing dihydrogen occurs at approximately -2 V for several carboxylic acids and phenols resulting in overpotentials of only -0.44 to -0.71 V depending on the weak acid used. This unusual catalytic reduction occurs at a potential at which the starting material, in the absence of a proton source, does not show a reduction peak. The mechanism for this process and structures for the intermediates have been discerned by electrochemical and computational analysis. These studies reveal that the catalyst is the monoanion of the starting material and an ECEC mechanism occurs.  相似文献   

3.
Iron phosphide films (Fe2P) grown in situ on stainless steel mesh (SSM) exhibit excellent electrocatalytic performance toward the glucose oxidation reaction (GOR) with robust durability. During GOR, the Fe2P could be further transformed into the oxidized Fe species with high catalytic activity. The integrated two-electrode glucose electrolytic cell utilizing Fe2P/SSM and Pt/C exhibited a cell voltage 300 mV lower than water splitting alone, indicating an efficient pathway for H2 production. These features suggest that the replacement of the sluggish oxygen evolution reaction (OER) with the thermodynamically more favourable GOR in the Pt/C ||Fe2P/SSM configuration is an attractive alternative for electrolytic H2 generation.  相似文献   

4.
Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,e...  相似文献   

5.
Here we demonstrate that nanobubbles can be used as cleaning agents both for the prevention of surface fouling and for defouling surfaces. In particular nanobubbles can be used to remove proteins that are already adsorbed to a surface, as well as for the prevention of nonspecific adsorption of proteins. Nanobubbles were produced on highly oriented pyrolytic graphite (HOPG) surfaces electrochemically and observed by atomic force microscopy (AFM). Nanobubbles produced by electrochemical treatment for 20 s before exposure to bovine serum albumin (BSA) were found to decrease protein coverage by 26-34%. Further, pre-adsorbed protein on a HOPG surface was also removed by formation of electrochemically produced nanobubbles. In AFM images, the coverage of BSA was found to decrease from 100% to 82% after 50 s of electrochemical treatment. The defouling effect of nanobubbles was also investigated using radioactively labeled BSA. The amount of BSA remaining on a stainless steel surface decreased by approximately 20% following 3 min of electrochemical treatment and further cycles of treatment effectively removed more BSA from the surface. In situ observations indicate that the air-water interface of the nanobubble is responsible for the defouling action of nanobubbles.  相似文献   

6.
7.
A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG–AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l−1 H2SO4. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml−1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml−1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml−1 As(III) and 2.5% for 20 ng ml−1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.  相似文献   

8.
The construction and optimization of five new types of miniaturized flow-through electrolytic cells with lead cathode and platinum anode for electrochemical hydride generation in atomic absorption spectrometry (HG-QFAAS) were achieved during this research study. The ion-exchange membrane was not part of these cells and only one carrying electrolyte for both electrode chambers was used. Hydride generation efficiency achieved was either comparable or higher than the one recorded for the classic thin-layer generation cell. The inner volume of the cathode chamber was reduced to a quarter of the classic thin-layer flow-through cell. Compared to the commonly used thin-layer flow-through cell, higher sensitivity (7.32×103 dm3 μg−1) and better limit of detection (0.32 μg dm−3) were obtained for selenium determination using two of these new generators.   相似文献   

9.
Electropolymerization of substituted dithiafulvenes is a convenient way to produce conjugated TTF electroactive films. When flexible polyoxyethyl chains link a conjugated TTF, the properties of the electroactive units in the film are the same as those observed in solution. This is illustrated with the existence of molecular movements in the TTF core that were previously described in solution and are clearly detected in the film. With this linker, morphologic investigations performed by in situ EC-AFM show a regular film formation leading to a continuous deposit with no special structures.  相似文献   

10.
Controlled surface modification of PE is achieved by an efficient and facile approach via plasma-assisted carbene insertion generated using diazo chemistry. The combination of plasma and carbene insertion shows a synergistic effect, which leads to an obvious enhancement of surface grafting, as shown qualitatively by a combination of IR and UV reflectance spectroscopy, and XPS analysis. The chemical modification may be observed spectroscopically, and the approach provides an opportunity for the convenient modification of low surface energy materials.  相似文献   

11.
Mechanistic aspects of electrochemical hydride generation for cadmium   总被引:1,自引:0,他引:1  
A reversed-phase chromatographic method has been developed and optimised in order to detect and quantitate soybean proteins in commercial heat-processed meat products. The optimised conditions consisted of a linear binary gradient tetrahydrofurane-water-0.05% trifluoroacetic acid at a flow rate of 1 mL/min. Meat products were defatted with acetone and soybean proteins were extracted with a buffered solution at pH 9.60. The injection of this extract into the chromatographic system enabled the detection of soybean proteins in heat-processed meat products in about 12 min. The method enabled the detection and quantitation of additions of 0.38% (w/w) and 0.63% (w/w), respectively, of soybean proteins (related to 10 g of initial product). The method has been proven to be precise with relative standard deviations (R.S.D.) for repeatability, intermediate precision, and internal reproducibility lower to 7.0%. Recoveries obtained for spiked meat products were close to 100% and no matrix interferences were observed. The application of the method to commercial heat-processed meat products in whose formulation soybean proteins were present yielded soybean protein contents ranging from 0.90% to 1.54%, below the maximum levels established by regulations.  相似文献   

12.
Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60–75%, depending on the cathode material, were obtained in the presence of up to 200 mg l−1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.  相似文献   

13.
Summary Literature data on the radiolytic generation of hydrogen in nitric acid solutions of plutonium are used to construct a model that predicts G(H2) as a function of the nitric acid and plutonium concentrations. The model indicates that G(H2) decreases with increasing concentration of nitric acid, in agreement with most experimental observations. The effect of the plutonium concentration on G(H2) is secondary to the effect of the acid concentration. An equation for interpolating Gvalues for total gas is included.  相似文献   

14.
Many nanoporous Si structures, including those formed by common electrochemical etching procedures, produce a uniformly etched nanoporous surface. If the electrochemical etch rate is slowed down, details of the etch process can be explored and process parameters may be varied to test hypotheses and obtain controlled nanoporous and defect structures. For example, after electrochemical etching of heavily n‐doped (R = 0.05–0.5 Ω·cm) silicon 〈100〉 single crystals at a current density of 10 mA cm?2 in buffer oxide etch (BOE) electrolyte solution, defect craters containing textured nanopores were observed to occur in ring‐shaped patterns. The defect craters apparently originate at the hydrogen/BOE bubble interface, which forms during hydrogen evolution in the reaction. The slower hydrogen evolution due to low current density and high BOE viscosity allows sufficient bubble residence time so that a high defect density appears at the bubble edges where local reaction rates are highest. Current‐carrying Si? OH species are most likely responsible for the widening of the craters. Reducing the defect/doping density in silicon lowers the defect concentration and thereby the density of nanopores. Measurements of photoluminescence lifetime and intensity show a distinct feature when the few nanopores formed at the ring edges are isolated from each other. Overall features observed in the photoluminescence intensity by XPS strongly emphasize the role of surface oxide that influences these properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
The quantitative electrochemical generation of bromine at a platinum electrode in acetic acid is described. Coulometric methods for the determination of hydroquinone and 2-methylhydroquinone are reported. The best results are obtained with 0.7–1.1 M potassium acetate solutions as supporting electrolyte, and biamperometric end-point detection. The effects of water and acetic anhydride on the accuracy of titrations are discussed. Determination of the formal redox potential of the Br2/Br- system in a 0.9 M potassium acetate solution in acetic acid showed that bromide is oxidized directly to bromine at a platinum electrode with 100% current efficiency.  相似文献   

16.
In this paper, the process of ammonia borane (AB) hydrolysis generate H2 on the transition metal Fe@Co core-shell structure has been obtained. According to the different roles played by H2O molecules and the number of H2O molecules involved, there are three schemes of reaction paths. Route I does not involve the dissociation of H2O molecules and all H atoms come from AB. Moreover, the H2O molecule has no effect on the breaking of the BH bond or the NH bond. The reaction absorbs more heat during the formation of the second and third H2 molecules. Route II includes the dissociation of H2O molecules and the cleavage of BH or NH bonds, respectively, and the reaction shows a slight exotherm. Route III started from the break of the BN bond and obtained 3H2 molecules through the participation of different numbers of H2O molecules. After multiple comparative analyses, the optimal hydrolysis reaction path has been obtained, and the reaction process can proceed spontaneously at room temperature.  相似文献   

17.
Tocksteinová Z  Opekar F 《Talanta》1986,33(8):688-690
Hydrogen cyanide was generated by constant-current oxidation of an aqueous solution of potassium thiocyanate at a platinum wire anode. In a solution of 0.1M potassium thiocyanate and 0.01M potassium sulphate at a nitrogen flow-rate of 3.5-5.0 ml sec , the rate of production of HCN was a linear function of the generation current I from 10 to 200 microA. The relative standard deviation for an HCN production rate of 6.07 ng sec (I = 130 microA) was 1.8% and that for 0.92 ng sec (I = 20 microA) was 5.9%. The time required to establish steady-state production after a change in the generation current was 10 min.  相似文献   

18.
An electrochemical strategy for running nitrogen-transfer reactions on chemically inert anode surfaces has been developed. The generation and trapping of highly reactive nitrene-transfer reagents can be accomplished under mild conditions on platinum electrodes. The key factor that accounts for the high levels of chemoselectivity in this process is the phenomenon of overpotential. We have found that molecules that are similar in terms of propensity toward oxidation can be differentiated on the basis of their affinity to a given electrode surface. Thereby, reactive species can be selectively generated in the presence of acceptor molecules of interest. Specifically, a wide range of structurally dissimilar olefins can be transformed into the corresponding aziridines in the presence of N-aminophthalimide. Likewise, nitrene generation in the presence of sulfoxides leads to their chemoselective transformation into the corresponding sulfoximines. In this paper we discuss the underlying mechanistic foundation of these reactions.  相似文献   

19.
A homogeneous catalyst [Cp*Rh(NH3)(H2O)2]3+ has been found for the clean conversion of methanol and water to hydrogen and carbon dioxide.The simple and easily available reaction steps can circumvent the formation of CO,therefore,making it possible to avoid inactivating catalysts and contaminating the hydrogen fuel.Different from conventional reforming method for hydrogen production,no additional alkaline or organic substances are required in this method.Valuable hydrogen can be obtained under ambient pressure at 70℃,corresponding TOF is 83.2 h-1.This is an unprecedented success in reforming methanol to hydrogen.Effects of reaction conditions,such as reaction temperature,initial methanol concentration and the initial pH value of buffer solution on the hydrogen evolution are all systematically investigated.In a certain range,higher reaction temperature will accelerate reaction rate.The slightly acidic condition is conducive to rapid hydrogen production.These findings are of great significance to the present establishment of the carbon-neutral methanol economy.  相似文献   

20.
Hydrogen generation from ethanol in supercritical water without catalyst   总被引:2,自引:0,他引:2  
Without oxidizing reagents or catalysts, ethanol was smoothly converted to CH3CHO and H2 in supercritical water at 450-500°C. CH3CHO was further decomposed into CH4 and CO instead of being oxidized into acetic acid. These features suggest the direct participation of water molecules in the ethanol dehydrogenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号