首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of investigating low temperature isomerization of n-hexane at 130, 140, 150, 160°C in a flow reactor with a fixed bed of catalyst of the Al2O3/ZrO2/SO4/Pt type a ratio of components in the catalyst system was selected and process conditions were defined, which allow to obtain highly branched high-octane isomers with a yield of up to 40% relative to a transformed raw material. A kinetic model of the process was proposed and kinetic parameters were calculated.  相似文献   

2.
Polybenzimidazoles (PBIs) are among the polymers of choice to prepare membranes for high temperature polymer fuel cells. Poly-2,2'(2,6-pyridine)-5,5'-bibenzimidazole (PBI5N), doped with H(3)PO(4), and acid-doped PBI5N containing 10 wt% of imidazole-functionalized silica membranes were studied with thermogravimetric analysis, differential scanning calorimetry, dynamic-mechanical analysis, infrared spectroscopy, and broadband electric spectroscopy to examine the structure-property relationships. Key results show that: (1) doped PBI5N membranes show thermal decomposition starting at 120 °C, while pristine PBI5N is stable up to 300 °C; (2) the presence of filler increases the acid uptake and decreases the crystallinity of PBI5N; (3) the addition of phosphoric acid reduces the mechanical properties of the membrane, while the addition of filler has the opposite effect; (4) acid-doped membranes have conductivity values on the order of 10(-2)-10(-3) S cm(-1); and (5) membranes exhibit a Vogel-Tamman-Fulcher (VTF) type proton conduction mechanism, where proton hopping is coupled with the segmental motion of the polymer chain. Infrared spectroscopy combined with DFT quantum mechanical calculations was used to assign the experimental spectrum of PBI5N.  相似文献   

3.
This study shows the preparation of a TiO_2 coated Pt/C(TiO_2/Pt/C) by atomic layer deposition(ALD),and the examination of the possibility for TiO_2/Pt/C to be used as a durable cathode catalyst in polymer electrolyte fuel cells(PEFCs). Cyclic voltammetry results revealed that TiO_2/Pt/C catalyst which has 2 nm protective layer showed similar activity for the oxygen reduction reaction compared to Pt/C catalysts and they also had good durability. TiO_2/Pt/C prepared by 10 ALD cycles degraded 70% after 2000 Accelerated degradation test, while Pt/C corroded 92% in the same conditions. TiO_2 ultrathin layer by ALD is able to achieve a good balance between the durability and activity, leading to TiO_2/Pt/C as a promising cathode catalyst for PEFCs. The mechanism of the TiO_2 protective layer used to prevent the degradation of Pt/C is discussed.  相似文献   

4.
BF3和H3PO4的分子化合物可用于异构烷烃和烯烃烷基化。BF3-H3PO4-SbF5可使异戊烷和乙烯烷基化得高辛烷值燃料,但这些都是液相酸,无现实意义。  相似文献   

5.
A monoclinic lithium vanadium phosphate (Li3V2(PO4)3) and carbon composite thin film (LVP/C) is prepared via electrostatic spray deposition. The film is studied with X-ray diffraction, scanning and transmission electron microscopy and galvanostatic cell cycling. The LVP/C film is composed of carbon-coated Li3V2(PO4)3 nanoparticles (50 nm) that are well distributed in a carbon matrix. In the voltage range of 3.0–4.3 V, it exhibits a reversible capacity of 118 mA h g?1 and good capacity retention at the current rate of 1 C, while delivers 80 mA h g?1 at 24 C. These results suggest a practical strategy to develop new cathode materials for high power lithium-ion batteries.  相似文献   

6.
Pt/WO3/C nanocomposites with parallel WO3 nanorods were synthesized and applied as the cathode catalyst for proton exchange membrane fuel cells(PEMFCs). Electrochemical results and single cell tests show that an enhanced activity for the oxygen reduction reaction(ORR) is obtained for the Pt/WO3/C catalyst compared with Pt/C. The higher catalytic activity might be ascribed to the improved Pt dispersion with smaller particle sizes. The Pt/WO3/C catalyst also exhibits a good electrochemical stability under potential cycling. Thus, the Pt/WO3/C catalyst can be used as a potential PEMFC cathode catalyst.  相似文献   

7.
Na-doped Li3V2(PO4)3/C (LVP/C) cathode materials are prepared by a sol–gel method. X-ray diffraction results show that the Na ion has been well doped into the crystal structure of LVP/C and does not disturb the extraction–insertion behavior of lithium ion seriously. The initial discharge capacity of the Na-doped LVP/C is 112.2?mA?h g?1 at 5?C, and the capacity retention reaches 98.3?% over 80 cycles. Cyclic voltammetry and electrochemical impedance spectra indicate that the reversibility of electrochemical redox reaction and the charge-transfer resistance of LVP/C cathode material have been significantly improved by Na doping. The improved performances can be attributed to the more convenient route for lithium ion diffusion and the lower activation energy of the extraction–insertion of lithium ion due to the weakness of Li-O bond.  相似文献   

8.
Zhu  Qing  Nan  Bo  Shi  Yang  Zhu  Yinggang  Wu  Sisi  He  Liqing  Deng  Yonghong  Wang  Liping  Chen  Quanqi  Lu  Zhouguang 《Journal of Solid State Electrochemistry》2017,21(10):2985-2995
Journal of Solid State Electrochemistry - Na3V2(PO4)3/C composite nanofibers are prepared successfully through a coaxial electrospinning technique and subsequent calcination. The diameter of the...  相似文献   

9.
The electrochemical performance of Li3V2(PO4)3/C was investigated at various low temperatures in the electrolyte 1.0 mol dm−3 LiPF6/ethyl carbonate (EC)+diethyl carbonate (DEC)+dimethyl carbonate (DMC) (volume ratio 1:1:1). The stable specific discharge capacity is 125.4, 122.6, 119.3, 116.6, 111.4, and 105.7 mAh g−1 at 26, 10, 0, −10, −20, and −30 °C, respectively, in the voltage range of 2.3–4.5 V at 0.2 C rate. When the temperature decreases from −30 to −40 °C, there is a rapid decline in the capacity from 105.7 to 69.5 mAh g−1, implying that there is a nonlinear relationship between the performance and temperature. With temperature decreasing, R ct (corresponding to charge transfer resistance) increases rapidly, D (the lithium ion diffusion coefficients) decreases sharply, and the performance of electrolyte degenerates obviously, illustrating that the low-temperature electrochemical performance of Li3V2(PO4)3/C is mainly limited by R ct, D Li, and electrolyte.  相似文献   

10.
Three Pt/C catalysts for PEMFC cathode were prepared by impregnation-reduction method using HCHO, NaBH4, and N2H4 as reductant, respectively, and characterized by BET, CV and XRD. The effect of reduction methods on the activity of catalysts was investigated. Compared with NaBH4 and N2H4, HCHO is the most suitable one among the three reductants. The catalytic activity for oxygen reduction is in the order Pt(HCHO) > Pt(NaBH4) > Pt(N2H4). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
As a kind of lithium-ion battery cathode material, monoclinic lithium vanadium phosphate/carbon Li3V2(PO4)3/C was synthesized by adopting phenolic resin as carbon source, both for reducing agent and coating material. The crystal structure and morphology of the samples were characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). Galvanostatic charge-discharging experiments and electrochemical impedance spectrum (EIS) were utilized to determine the electrochemical insertion properties of the samples. XRD data revealed that phenolic resin does not change the crystal structure of Li3V2(PO4)3/C. Furthermore, the morphology of grains and the electronic conductivity of Li3V2(PO4)3/C were improved. Galvanostatic charge-discharging and EIS results showed that the optimal electrochemical properties and the minimum charge-transfer resistance of Li3V2(PO4)3/C can be reached when added by 5 wt.% of redundant carbon (except the carbon needed to reduce V5+ to V3+). The initial discharge capacity is 128.4 mAh g?1 at 0.2 C rate and 101.2 mAh g?1 at 5 C in the voltage range of 3.0~4.3 V.  相似文献   

12.
The effect of Al2O3 -coating on Li3V2(PO4)3/C cathode material for lithium-ion batteries has been investigated. The crystalline structure and morphology of the synthesized powders have been characterized by XRD, SEM, and HRTEM, and their electrochemical performances are evaluated by CV, EIS, and galvanostatic charge/discharge tests. It is found that Al2O3 -coating modification stabilizes the structure of the cathode material, decreases the polarization of electrode and suppresses the rise of the surface film resistance. Electrochemical tests indicate that cycling performance and rate capability of Al2O3-coated Li3V2(PO4)3/C are enhanced, especially at high rates. The Al2O3-coated material delivers discharge capacity of 123.03 mAh g?1 at 4 C rate, and the capacity retention of 94.15 % is obtained after 5 cycles. The results indicate that Al2O3 -coating should be an effective way to improve the comprehensive properties of the cathode materials for lithium-ion batteries.  相似文献   

13.
傅瑞标  吴新涛  胡胜民  王龙胜 《结构化学》2004,23(10):1107-1110
1 INTRODUCTION Metal organophosphonates have attracted considerable attention for over three decades due to their potential or practical applications, include- ing ion exchanges[1, 2], molecular sensors[3] and optics[4, 5]. Recently, a number of porous m…  相似文献   

14.
15.
A 3-D phase diagram of the HPC/H2O/H3PO4 tertiary system against various temperatures was established. Four distinct phases—the completely separated phase (S), the cloudy suspension phase (CS), the liquid crystalline miscible phase (LC), and the isotropically miscible phase (I)—were identified. The S phase shrank as the temperature increased, revealing that the HPC solubility increased with temperature, regardless of the LCST (lower critical solution temperature) characteristic. The addition of H3PO4 suppressed the formation of LC phase. However, as the temperature was raised sharply from 50 to 70?°C, the LC phase could only be maintained at high H3PO4 concentration region; it was a triangular shape, and the top apex of the triangle was the temperature-invariant L* point (HPC/H2O/H3PO4 38/9/53?wt%). The CS phase expanded considerably into the H2O-rich but H3PO4-poor region when the temperature continued to increase over 48?°C. The LCST points of the CS phase that contained 0 and 15?wt% of H3PO4 were 34 and 38?°C, respectively. These CS results demonstrate that H3PO4 suppresses the occurrence of LCST behavior. Additionally, the binodal curve exhibits a weak or even zero dependence of binodal temperature on the HPC concentration at HPC concentrations of less than 30?wt% in a pure water system. A hypothesis concerning the sequential desorption of water molecules was proposed to explain such behavior.  相似文献   

16.
Abstract

Crossed aldol condensation of aromatic aldehydes with cyclic ketones in the presence of catalytic amount of NH4H2PO4/SiO2 (as a safe, green, and cheap heterogeneous catalyst) under solvent-free condition afforded α,?-bis(substituted-benzylidene) cycloalkanones in high yields. This method is general with respect to all types of aromatic aldehydes and is an eco-friendly procedure. And the catalyst is easily prepared, stable, reusable, and efficient under the reaction conditions.  相似文献   

17.
Ag3PO4 is widely used in the field of photocatalysis because of its unique activity. However, photocorrosion limits its practical application. Therefore, it is very urgent to find a solution to improve the light corrosion resistance of Ag3PO4. Herein, the Z-scheme WO3(H2O)0.333/Ag3PO4 composites are successfully prepared through microwave hydrothermal and simple stirring. The WO3(H2O)0.333/Ag3PO4 composites are characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV-Vis spectroscopy. In the degradation of organic pollutants, WO3(H2O)0.333/Ag3PO4 composites exhibit excellent performance under visible light. This is mainly attributed to the synergy of WO3(H2O)0.333 and Ag3PO4. Especially, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is the highest, and the methylene blue can be completely degraded in 4 min. In addition, the stability of the composites is also greatly enhanced. After five cycles of testing, the photocatalytic activity of 15%WO3(H2O)0.333/Ag3PO4 is not obviously decreased. However, the degradation efficiency of Ag3PO4 was only 20.2%. This indicates that adding WO3(H2O)0.333 can significantly improve the photoetching resistance of Ag3PO4. Finally, Z-scheme photocatalytic mechanism is investigated.  相似文献   

18.
Journal of Solid State Electrochemistry - A new alluaudite-type Na2VFe2(PO4)3 with carbon composite has been prepared for the first time via a simple sol-gel method using citric acid as an...  相似文献   

19.
Li(3)V(2)(PO(4))(3)/graphene nanocomposites have been firstly formed on reduced graphene sheets as cathode material for lithium batteries. The nanocomposites synthesized by the sol-gel process exhibit excellent high-rate and cycling stability performance, owing to the nanoparticles connected with a current collector through the conducting graphene network.  相似文献   

20.
《中国化学快报》2021,32(11):3570-3574
Na3V2(PO4)3 is a very prospective sodium-ion batteries (SIBs) electrode material owing to its NASICON structure and high reversible capacity. Conversely, on account of its intrinsic poor electronic conductivity, Na3V2(PO4)3 electrode materials confront with some significant limitations like poor cycle and rate performance which inhibit their practical applications in the energy fields. Herein, a simple two-step method has been implemented for the successful preparation of carbon-coated Na3V2(PO4)3 materials. As synthesized sample shows a remarkable electrochemical performance of 124.1 mAh/g at 0.1 C (1 C = 117.6 mA/g), retaining 78.5 mAh/g under a high rate of 200 C and a long cycle-performance (retaining 80.7 mAh/g even after 10000 cycles at 20 C), outperforming the most advanced cathode materials as reported in literatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号