首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Scanning electrochemical microscopy (SECM) still lacks reliable means for performing constant-distance imaging experiments. We demonstrate, for the first time, that the same negative alternating current (AC) feedback can be observed on approach to an insulator and an unbiased conductor at optimal experimental conditions. This leads to a novel constant-distance imaging mode. To perform AC-SECM imaging, only minor modifications of the existing SECM set-up were necessary. The new constant-distance AC-SECM imaging was conducted to provide topographical information not affected by variations in sample conductivity and reactivity. Furthermore, simultaneous AC and DC SECM measurements were carried out to demonstrate that both topographical and chemical information could be revealed.  相似文献   

2.
For a better understanding of the initiation of localised corrosion, there is a need for analytical tools that are capable of imaging corrosion pits and precursor sites with high spatial resolution and sensitivity. The lateral electrochemical contrast in alternating-current scanning electrochemical microscopy (AC-SECM) has been found to be highly dependent on the frequency of the applied alternating voltage. In order to be able to obtain data with optimum contrast and high resolution, the AC frequency is swept in a full spectrum at each point in space instead of performing spatially resolved measurements at one fixed perturbation frequency. In doing so, four-dimensional data sets are acquired (4D AC-SECM). Here, we describe the instrument set-up and modus operandi, along with the first results from the imaging of corroding surfaces. Corrosion precursor sites and local defects in protective organic coatings, as well as an actively corroding pit on 304 stainless steel, have been successfully visualised. Since the lateral electrochemical contrast in these images varies with the perturbation frequency, the proposed approach constitutes an indispensable tool for obtaining optimum electrochemical contrast.  相似文献   

3.
A non-optical shear-force-based detection scheme for accurately controlling the tip-to-sample distance in scanning electrochemical microscopy (SECM) is presented. With this approach, the detection of the shear force is accomplished by mechanically attaching a set of two piezoelectric plates to the scanning probe. One of the plates is used to excite the SECM tip causing it to resonate, and the other acts as a piezoelectric detector of the amplitude of the tip oscillation. Increasing shear forces in close proximity to the sample surface lead to a damping of the vibration amplitude and a phase shift, effects that are registered by connecting the detecting piezoelectric plate to a dual-phase analogue lock-in amplifier. The shear force and hence distance-dependent signal of the lock-in amplifier is used to establish an efficient, computer-controlled closed feedback loop enabling SECM imaging in a constant-distance mode of operation. The details of the SECM setup with an integrated piezoelectric shear-force distance control are described, and approach curves are shown. The performance of the constant-distance mode SECM with a non-optical detection of shear forces is illustrated by imaging simultaneously the topography and conductivity of an array of Pt-band microelectrodes.  相似文献   

4.
A new method for measuring local interfacial impedance properties with high lateral resolution was developed by combination of electrochemical impedance spectroscopy (EIS) with scanning electrochemical microscopy (SECM). Alternating current scanning electrochemical microscopy (AC-SECM) allowed to identify and visualise microscopic domains of different conductivity/electrochemical activities on solid/liquid interfaces immersed into an electrolyte. The performance of the method was illustrated by imaging an array of Pt-band microelectrodes in solutions of low conductivity in the absence of any redox mediator.  相似文献   

5.
Eckhard K  Schuhmann W 《The Analyst》2008,133(11):1486-1497
Alternating current scanning electrochemical microscopy (AC-SECM) is a growing branch within the variety of SECM methods. This review covers publications involving AC-SECM from its beginning to date. The findings of several research groups are thematically structured along with the specific experimental procedures. This should enable researchers to rationally choose purposeful parameters for their AC-SECM experiments.  相似文献   

6.
The damage to a metal is significantly enhanced when simultaneously exposed to a corrosive solution and a cyclic mechanical stress. However, decoupling the contributions from each damage mechanisms is difficult. Localised electrochemical techniques, in particular scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy (SECCM), scanning kelvin probe force microscopy (SKPFM), and scanning vibrating electrode technique (SVET), can be advantageous when determining corrosion fatigue damage mechanisms and local phenomena, such as the transition between a corrosion pit and a fatigue crack. The recent corrosion fatigue literature is reviewed to highlight the usefulness of each localised electrochemical technique and how they can contribute to advancing the corrosion fatigue field.  相似文献   

7.
In scanning electrochemical microscopy (SECM) a microelectrode is usually scanned over a sample without following topographic changes (constant-height mode). Therefore, deconvolution of effects from distance variations arising from non-flat sample surface and electrochemical surface properties is in general not possible. Using a shear force-based constant distance mode, information about the morphology of a sample and its localized electrochemical activity can be obtained simultaneously. The setup of the SECM with integrated constant-distance mode and its application to non-flat or tilted surfaces, as well as samples with three-dimensional surface structures are presented and discussed. The facilitated use of non-amperometric tips in SECM like enzyme-filled glass capillaries is demonstrated.  相似文献   

8.
In this work, scanning electrochemical microscopy (SECM) measurements were employed to characterize the electrochemical activities on polished and as-received surfaces of the 2098-T351 aluminum alloy (AA2098-T351). The effects of the near surface deformed layer (NSDL) and its removal by polishing on the electrochemical activities of the alloy surface were evaluated and compared by the use of different modes of SECM. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were also employed to characterize the morphology of the surfaces. The surface chemistry was analyzed by X-ray photoelectron spectroscopy (XPS). The surface generation/tip collection (SG/TC) and competition modes of the SECM were used to study hydrogen gas (H2) evolution and oxygen reduction reactions, respectively. H2 evolution and oxygen reduction were more pronounced on the polished surfaces. The feedback mode of SECM was adopted to characterize the electrochemical activity of the polished surface that was previously corroded by immersion in a chloride-containing solution, in order to investigate the influence of the products formed on the active/passive domains. The precorroded surface and as-received surfaces revealed lower electrochemical activities compared with the polished surface showing that either the NSDL or corrosion products largely decreased the local electrochemical activities at the AA2098-T351 surfaces.  相似文献   

9.
Patterning of glassy carbon surfaces grafted with a layer of nitrophenyl moieties was achieved by using the direct mode of scanning electrochemical microscopy (SECM) to locally reduce the nitro groups to hydroxylamine and amino functionalities. SECM and atomic force microscopy (AFM) revealed that potentiostatic pulses applied to the working electrode lead to local destruction of the glassy carbon surface, most likely caused by etchants generated at the positioned SECM tip used as the counter electrode. By applying galvanostatic pulses, and thus, limiting the current during structuring, corrosion of the carbon surface was substantially suppressed. After galvanostatic patterning, unambiguous proof of the formation of the anticipated amino moieties was possible by modulation of the pH value during the feedback mode of SECM imaging. This patterning strategy is suitable for the further bio‐modification of microstructured surfaces. Alkaline phosphatase, as a model enzyme, was locally bound to the modified areas, thus showing that the technique can be used for the development of protein microarrays.  相似文献   

10.
卢琳  李晓刚  高瑾 《化学进展》2011,(8):1618-1626
以扫描开尔文探针,局部交流阻抗和扫描电化学显微镜为代表的微区电化学技术以其高精度、高空间解析度的定域分析优势被广泛应用。本文简要介绍了这三种技术的测量原理和关键问题,并着重归纳了这些技术应用于有机涂层/金属界面腐蚀行为的研究成果,包括界面微区表观形貌的获取,不同界面腐蚀机制的推理验证及其影响因素的作用机理等,并对三种技...  相似文献   

11.
Combined atomic force microscopy–scanning electrochemical microscopy (AFM–SECM) is for the first time used to generate single corrosion pits on passivating iron surfaces in the micrometer range. The AFM–SECM probe locally generates nitric acid during the oxidation of nitrite ions with the release of protons at selected sites on the surface of the otherwise passive metal. High confinement of passive film breakdown is achieved from the combination of a small probe size and the inhibiting properties of non-reacted nitrite ions on the surrounding passivated surface. Simultaneous visualization of pit nucleation and propagation can be obtained in the same solution without changing the probe by AFM.  相似文献   

12.
《Analytical letters》2012,45(18):2876-2886
Micron-size ion selective micropipettes can be used in scanning electrochemical microscopy (SECM). They can provide excellent spatial resolution. Unfortunately the resistance of these small sensors is high. Their application needs special shielding and slow scanning rates. Usually their lifetime hardly exceeds a few days.

Zinc layer or dispersed zinc particles containing films are often used for providing cathodic protection against corrosion in case of metal surfaces. Therefore, in corrosion studies, measurements of local zinc ion concentration can give important information about the nature of the process. For corrosion studies we needed SECM measuring tips for imaging concentration profiles of Zn2+ions involved in surface processes. Based on our earlier experience, solid contact micropipettes for selective measurements of Zn2+ion concentration were prepared with a tip size of a few micrometers. The properties of the micropipettes were investigated. They were also used in SECM imaging. In this paper, details of Zn2+ion selective microelectrode preparation are described. Data about their properties, lifetime, resistance, and ion activity response are shown. Preliminary findings in SECM imaging of zinc ion concentration profiles are shown. The improvement of the scanning rate achieved by lowering tip resistance is a main advantage in potentiometric SECM.  相似文献   

13.
The suitability of frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for investigation of thin passivating layers covering the surface of corrosion-inhibited metals has been demonstrated. Inhibition of copper corrosion by benzotriazole (BTAH) and methylbenzotriazole (MBTAH), which are effective inhibitors for this metal under many environmental conditions, was investigated. Strong dependencies were found for the AC z-approach curves with both the duration of the inhibitor treatment and the frequency of the AC excitation signal applied in AC-SECM. Both negative and positive feedback behaviours were observed in the AC approach curves for untreated copper and for Cu/BTAH and Cu/MBTAH samples. Negative feedback behaviour occurred in the low-frequency range, whereas a positive feedback effect was observed at higher frequencies. A threshold frequency related to the passage from negative to positive regimes could be determined in each case. The threshold frequency for inhibitor-modified samples was found always to be significantly higher than for the untreated metal, because the inhibitor film provides electrical insulation for the surface. Moreover, the threshold frequency increased with increasing surface coverage by the inhibitor. 4D AC-SECM was successfully applied to visualizing spatially resolved differences in local electrochemical activity between inhibitor-free and inhibitor-covered areas of the sample.  相似文献   

14.
The redox competition mode of scanning electrochemical microscopy (SECM) was used to visualize differences in local electrocatalytic activity of Fe and Ni hexacyanoferrates (HCFs) in hydrogen peroxide reduction. The uniform round-shaped spots of electrocatalysts for the SECM measurements were electrochemically deposited using a scanning droplet cell. A negligible activity of NiHCF towards H2O2 reduction compared to Prussian Blue (PB) was observed. The dependence of local Prussian Blue activity on the applied potential was investigated. The proposed strategy explores the potential application of SECM as a rapid screening tool for HCF film activity within a single experiment.  相似文献   

15.
A local electrodeposition method was developed for chitosan by exploiting a pH gradient between a macroscopic electrode (the support) and a much smaller counter electrode. The deposition was confined either by using the direct mode of scanning electrochemical microscopy (SECM) or by performing the deposition in channels of a microfluidic network. The roughness was characterized by noncontact scanning force microscopy. The availability of amino groups at the surface of the microstructures was visualized after labeling by confocal laser scanning microscopy. The enzyme glucose oxidase could be entrapped during the electrochemical deposition and showed activity as seen by SECM images.  相似文献   

16.
In the field of manufacturing technology an exciting revolution is in progress today. The different methods of the so called additive manufacturing (AM) technologies are under fast developments. Several versions of them are called 3D printing. Less interest has been given to study the corrosion resistance character of the differently made 3D printed metal alloy items. In this work corrosion behaviour of 3D printed AlMg4.5Mn0.7 alloy samples were investigated. Conventional methods like open circuit potential measurements, Tafel plots taking and scanning electrochemical microscopy (SECM) – with pH measuring tungsten micro‐tip and micro‐disc type Pt electrode were used. The metal samples were embedded in epoxy resin. 2D SECM images and line scans were made to see the local changes of oxygen concentration. Flame atomic absorption spectroscopy was used for measuring the metal composition of manufacturing wire and printed sample. The local activity of the surface spots were measured using approach curves recorded in case of ferrocene methanol mediator.  相似文献   

17.
This work presents a scanning electrochemical microscopy (SECM)-based in situ corrosion probing methodology that is capable of monitoring the release of zinc species in corrosion processes. It is based on the use of Hg-coated Pt microelectrodes as SECM tips, which offer a wider negative potential range than bare platinum or other noble-metal tips. This allows for the reduction of zinc ions at the tip to be investigated with low interference from hydrogen evolution and oxygen reduction from aqueous solutions. The processes involved in the corrosion of zinc during its immersion in chloride-containing solutions were successfully monitored by scanning the SECM tip, set at an adequate potential, across the sample either in one direction or in the X-Y plane parallel to its surface. In this way, it was possible to detect the anodic and cathodic sites at which the dissolution of zinc and the reduction of oxygen occurred, respectively. Additionally, cyclic voltammetry (CV) or constant potential measurements were used to monitor the release of zinc species collected at the tip during an SECM scan.  相似文献   

18.
In this work, the corrosion degradation of tinplate in contact with salty water is investigated by scanning electrochemical microscopy (SECM) electrochemical impedance spectroscopy (EIS). Experimental results indicate tin maintains at passive state during the exposure; however, pores and defects existed in tin coating leads to an exposure of carbon steel substrate to the electrolyte, in which localized corrosion tends to occur within the pore. A phenomenological model is proposed to interpret corrosion mechanism of tinplate in contact with salty food based on the proposed electrochemical equivalent circuit.  相似文献   

19.
We illustrate in this paper the successful combination of the direct and feedback mode of scanning electrochemical microscopy (SECM) for the writing of oligonucleotide patterns on thin gold films alongside the imaging of DNA hybridization. The patterning process was achieved using the direct mode of SECM, where the electrical field established between the SECM tip and the gold interface was used to drive the local deposition of micrometre sized polypyrrole spots to which a 15(mer) oligonucleotide (ODN) strand was linked covalently. Imaging of the deposited polypyrrole-ODNs was achieved by means of the feedback mode of SECM using Ru(NH(3))(6)(3+) as the mediator. The detection of the hybridization reaction of the ODN probes with their biotinylated complementary strands using SECM was possible after subsequent reactions with streptavidin and biotinylated horseradish peroxidase (HRP). The HRP-biocatalyzed oxidation of 4-chloro-1-naphthol (1) in the presence of H(2)O(2), and the precipitation of the insoluble product 4-chloro-1-naphthon (2) on the hybridized areas on the gold film caused a local alteration of conductivity. Such a change in conductivity was sensitively detected by the SECM tip and allowed imaging of DNA arrays in a fast and straightforward way.  相似文献   

20.
扫描电化学显微镜(SECM)是一种具有较高空间分辨率的化学显微镜,在成像和动力学研究已经广泛应用. 本文简要介绍SECM基本原理,综述2009年以来SECM在腐蚀方面的应用,包括扫描成像和异相转移电子化学活性的研究,并简要介绍了作者课题组在SECM方面的研究工作,展望SECM在腐蚀研究的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号