首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-Thioamide thiosemicarbazone derived of 2-chloro-4-hydroxy-benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in chloroform gave the adducts [ReX(CO)3(HL)] (1a X = Cl, R = H; 1a′ X = Br, R = H; 1b X = Cl, R = CH3; 1b′ X = Br, R = CH3; 1c X = Cl, R = Ph; 1c′ X = Br, R = Ph) in good yield. Complexes 1a′ and 1b’ were also obtained by the reaction of HL1 and HL3 with [ReBr(CO)5] in toluene.All the compounds have been characterized by elemental analysis, mass spectrometry (FAB), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3 and 1a·H2O were also established by X-ray diffraction. In 1a, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms, forming a five-membered chelate ring, as well as three carbonyl carbon and chloride atoms. The resulting coordination polyhedron can be described as a distorted octahedron.The study of the crystals obtained by slow evaporation of methanol and DMSO solutions of the adducts 1a′ and 1b, respectively, showed the formation of dimer structures based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6]·3H2O (2a)·3H2O and [Re2(L2)2(CO)6]·(CH3)2SO (2b)·2(CH3)2SO. Amounts of these thiosemicarbazonate complexes [Re2(L)2(CO)6] (2) were obtained by reaction of the corresponding free ligands with [ReCl(CO)5] in dry toluene.In 2a·3H2O and 2b·2(CH3)2SO the dimer structures are established by Re–S–Re bridges, where S is the thiolate sulphur from a N,S-bidentate thiosemicarbazonate ligand. In both structures the rhenium coordination sphere is similar; the dimers are in the same diamond Re2S2 face.  相似文献   

2.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

3.
Oxidative demetalation of Fischer ferrocenyl ethoxy carbene complexes (1ac, M = Cr, Mo, W) and new Fischer ferrocenyl R-amino carbene complexes [25 (ac), 1115 (ac), and 2122 (ac); M = Cr, Mo, W; R = H, CH3, C2H5, C3H7, (CH2)2OH, (CH2)3OH, (CH2)2(OMe)2, (CH2)3N(Me)2, CH2CHCH2, (CH2)2OSi(CH3)3, (CH2)3OSi(CH3)3] with elemental sulfur–NaBH4 were carried out under mild conditions, obtaining O-ethyl ferrocenecarbothioate (6) and novel ferrocenyl thioamides (710 and 1620) in excellent yields.  相似文献   

4.
《Comptes Rendus Chimie》2008,11(8):906-914
A novel unsymmetrically disubstituted propanedithiolate compound [Fe2(CO)42-dmpe)(μ-pdt)] (1) (pdt = SCH2CH2CH2S, dmpe = Me2PCH2CH2PMe2) was synthesized by treatment of [Fe2(CO)6(μ-pdt)] with dmpe in refluxing THF. Compound 1 was characterized by single-crystal X-ray diffraction analysis. Protonation of 1 with HBF4·Et2O in CH2Cl2 gave at room temperature the μ-hydrido derivative [Fe2(CO)42-dmpe)(μ-pdt)(μ-H)](BF4)] (2). At low temperature, 1H and 31P–{1H} NMR monitoring revealed the formation of a terminal hydride intermediate 3. Comparison of these results with those of a VT NMR study of the protonation of symmetrical compounds [Fe2(CO)4L2(μ-pdt)] [L = PMe3, P(OMe)3] suggests that in disubstituted bimetallic complexes [Fe2(CO)4L2(μ-pdt)], dissymmetry of the complex is required to observe terminal hydride species. Attempts to extend the series of chelate compounds [Fe2(CO)42-L2)(μ-pdt)] by using arphos (arphos = Ph2AsCH2CH2PPh2) were unsuccessful. Only mono- and disubstituted derivatives [Fe2(CO)6−n(Ph2AsCH2CH2PPh2)n(μ-pdt)] (n = 1, 4a; n = 2, 4b), featuring dangling arphos, were isolated under the same reaction conditions of formation of 1. Compound 4b was structurally characterized.  相似文献   

5.
Fluorescence properties of five 4-acyl pyrazolone based hydrazides (H2SBn) and their Fe (III) heterochelates of the type [Fe(SBn)(L)(H2O)]·mH2O [H2SBn = nicotinic acid [1-(3-methyl-5-oxo-1-phenyl-4,5-di hydro-1H-pyrazol-4yl)-acylidene]-hydrazide; where acyl = –CH3, m = 4 (H2SB1); –C6H5, m = 2 (H2SB2); –CH2–CH3, m = 3 (H2SB3); –CH2–CH2–CH3, m = 1.5 (H2SB4); –CH2–C6H5, m = 1.5 (H2SB5) and HL = 1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid] were studied at room temperature. The fluorescence spectra of heterochelates show red shift, which may be due to the chelation by the ligands to the metal ion. It enhances ligand ability to accept electrons and decreases the electron transition energy. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been reported.  相似文献   

6.
Arylselenium(II) derivatives of dithiophosphorus ligands of type ArSeSP(S)R2 [Ar = Ph, R = Ph (1), OPri (2); 2-[MeN(CH2CH2)2NCH2]C6H4, R = Ph (3), OPri (4); 2-[O(CH2CH2)2NCH2]C6H4, R = OPri (6)] were prepared by redistribution reactions between Ar2Se2 and [R2P(S)S]2. The derivative [2-{O(CH2CH2)2NCH2}C6H4]SeSP(S)Ph2 (5) was obtained by the salt metathesis reaction between [2-{O(CH2CH2)2NCH2}C6H4]SeCl and NH4S2PPh2. The compounds were investigated by multinuclear (1H, 13C, 31P, 77Se) NMR and infrared spectroscopy. The crystal and molecular structures of 1, 3, 4 and 6 were determined by single-crystal X-ray diffraction. In compounds 3, 4 and 6 the N(1) atom is intramolecularly coordinated to the selenium center, resulting in a T-shaped geometry (hypervalent 10-Se-3 species). The dithiophosphorus ligands act as anisobidentate in 1 and monodentate in 3, 4 and 6. Supramolecular architectures based on intermolecular S?H and N?H contacts between molecular units are formed in the hypervalent derivatives 3 and 4, while in the compounds 1 and 6 the molecules are associated into polymeric chains through either Se?S or O?H contacts, with no further inter-chain interactions.  相似文献   

7.
Reaction of 2,2-difluoro-1-tributylstannylethenyl p-toluenesulfonate (1) with bis(tributyltin) in the presence of 5 mol % Pd(PPh3)4 and 30 equiv LiBr in THF at reflux temperature for 7 h afforded (2,2-difluoroethenylidene)bis(tributylstannane) (2) in a 70% yield. Coupling reaction of 2 with aryl iodides in the presence of 5 mol % Pd(PPh3)4 and 5 mol % CuI in DMF at 80 °C for 3–4 h provided the coupled products 3 in 59–85% yields.  相似文献   

8.
Dinuclear ruthenium(I,I) carboxylate complexes [Ru2(CO)4(μ-OOCR)2]n (R = CH3 (1a), C3H7 (1b), H (1c), CF3 (1d)) and 2-pyridonate complex [Ru2(CO)4(μ-2-pyridonate)2]n (3) catalyze efficiently the cyclopropanation of alkenes with methyl diazoacetate. High yields are obtained with terminal nucleophilic alkenes (styrene, ethyl vinyl ether, α-methylstyrene), medium yields with 1-hexene, cyclohexene, 4,5-dihydrofuran and 2-methyl-2-butene. The E-selectivity of the cyclopropanes obtained from the monosubstituted alkenes and the cycloalkenes decreases in the order 1b > 1a > 1d > 1c. The cyclopropanation of 2-methyl-2-butene is highly syn-selective. Several complexes of the type [Ru2(CO)4(μ-L1)2]2 (4) and (5), [Ru2(CO)4(μ-L1)2L2] (L2 = CH3OH, PPh3) (6)–(9) and [Ru2(CO)4(CH3CN)2(μ-L1)2] (10) and (11), where L1 is a 6-chloro- or 6-bromo-2-pyridonate ligand, are also efficient catalysts. Compared with catalyst 3, a halogen substituent at the pyridonate ligand affects the diastereoselectivity of cyclopropanation only slightly.  相似文献   

9.
Bis(NN–CH2)-substituted dimethylcyclam (cyclamNN2) was designed and synthesized as a paramagnetic host, where NN stands for 4,4,5,5-tetramethylimidazolin-1-oxyl 3-oxide. We prepared transition-metal complexes [M(cyclamNN2)](ClO4)2 (M = Cu (1), Ni (2)) and investigated their metal–radial exchange couplings. The copper ion in 1 is located at the center of the cyclam cavity and one radical arm is coordinated at an axial position. Compound 1 showed ferromagnetic coupling (2J/kB = +44(3) K), which is ascribable to the NN–Cu coupling. Ferromagnetic coupling was also observed in 2, but the molecular structure was unknown at present. The Curie–Weiss analysis gave the Weiss temperature (θ) of +13.5(6) K for 2.  相似文献   

10.
The synthesis and characterisation of two diiron hexacarbonyl complexes [Fe2(SXS)(CO)6], 1 (SXS = ((?SCH2)2C(CH3)CH2OCOFc, Fc = ferrocenyl group) and 2 (SXS = (?SCH2CH2NHCOFc)2), were described. By using intramolecularly integrated ferrocenyl group(s) in the complexes as an internal standard, the nature of two stepwise one-electron processes of the complexes coupled with a chemical reaction was clearly demonstrated. Examining how the reduction transformed into sole one-electron process with both increasing scanning rate under Ar/CO atmosphere and lowering temperature indicated conclusively that the reduction of both complexes couples to a chemical reaction which involves CO-loss.  相似文献   

11.
《Comptes Rendus Chimie》2014,17(1):81-90
The reaction of 1,2-bis(diphenylphosphino)ethane (dppe) with various ketones in acetone produces the new phosphonium salts [RC(O)CH2PPh2(CH2)2PPh2CH2C(O)R]X2 (R = 2-naphtyl, X = Br (1); R = 2,4-dichlorophenyl, X = Cl (2); R = 3-nitrophenyl, X = Br (3)). Further treatment with a base gives the symmetrical phosphorus ylides, RC(O)CHPPh2(CH2)2PPh2CHC(O)R (R = 2-naphtyl (4), 2,4-dichlorophenyl (5), 3-nitrophenyl (6)). These ligands react with Pd(II) chloride to form C,C-chelated complexes with the composition [RC(O)CHPPh2(CH2)2PPh2CHC(O)R]PdCl2, where R = 2-naphtyl (7), 2,4-dichlorophenyl (8), 3-nitrophenyl (9). These compounds have been characterized by elemental analysis and spectroscopic methods and consist of seven-membered rings formed by the coordination of the ligands through the two ylidic carbon atoms to the metal center. The structure of compound 5 has been characterized crystallographically. The palladium complex 9 is employed in the Suzuki cross-coupling reaction between phenylboronic acid and several aryl halides. It was found to be a competent catalyst for a variety of substrates to afford the coupled products in high yields using DMF as a solvent. The biaryl products were obtained under aerobic conditions in short reaction times with a lower loading of the catalyst (0.001 mol%).  相似文献   

12.
《Polyhedron》2007,26(9-11):2235-2242
The ligand exchange reaction between Mn(OC(O)CH3)2 and benzoic acid under solvothermal conditions in toluene at 110 °C yields colorless crystals of {Mn5(OC(O)CH3)6(OC(O)C6H5)4} (1). The asymmetric unit of this complex is Mn2.5(OC(O)CH3)3(OC(O)C6H5)2 with each of the three different Mn(II) atoms in 6-fold coordination and one of the benzoate ligands exhibiting the rare μ3-symmetric bridging mode (O–Mn–O angle = 57°). The structure consists of edge-shared Mn12 loops arranged in a honeycomb-like 2D sheet with the acetate ligands displaced slightly out of the plane. The sheets are spaced at 12 Å and linked into a 3D network via weak intersheet interactions. Magnetic susceptibility characterization of 1 indicates antiferromagnetic exchange with a Weiss constant of −165 K and a transition toward ferromagnetic exchange below 10 K corroborated with a finite imaginary component in the variable temperature susceptibility data.  相似文献   

13.
Reaction of [Ag(CH3impy)2]PF6, 1, with Au(tht)Cl produces the monometallic Au(I)-species [Au(CH3impy)2]PF6, 2. Treatment of 2 with excess AgBF4 in acetonitrile, benzonitrile or benzylnitrile produces the polymeric species {[AuAg(CH3impy)2(L)](BF4)2}n, (L = CH3CN,3; L = C6H5CN, 4; L = C6H5CH2CN, 5) where the Au(I) centers remain bound to two carbene moieties while the Ag(I) centers are coordinated to two alternating pyridyl groups and a solvent molecule (L). Reaction of 2 with AgNO3 in acetonitrile produces the zig-zag mixed-metal polymer {[AuAg(CH3impy)2(NO3)]NO3}n, 6, that contains a coordinated nitrate ion in place of the coordinated solvent species. All of these polymeric materials are dynamic in solution and dissociate into their respective monometallic components. Compounds 26 are intensely luminescent in the solid-state and in frozen solution. All of these complexes were characterized by 1H, 13C NMR, electronic absorption and emission spectroscopy and elemental analysis.  相似文献   

14.
The reaction of [Cp1IrCl2]2 (Cp* = η5 ? C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S?)2 (tpdt), led to the formation of [Cp1Ir(η3 ? tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ ? η2:η3 ? tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ ? η2:η3 ? tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ ? η1:η3 ? tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ ? η2:η3 ? tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ ? η1:η3 ? tpdt)(COD)RhCl (6) and [Cp1Ir(μ ? η2:η3 ? tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

15.
The reaction of [Cp1IrCl2]2 (Cp* = η5  C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S)2 (tpdt), led to the formation of [Cp1Ir(η3  tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ  η2:η3  tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ  η2:η3  tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)RhCl (6) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

16.
Two mesoporous silica-supported chiral Rh and Ru catalysts 5 and 6 with ordered two-dimensional hexagonal mesostructures were prepared by directly postgrafting organometallic complexes RhCl[(R)-MonoPhos(CH2)3Si(OMe)3][(R,R)-DPEN] and RuCl2[(R)-MonoPhos(CH2)3Si(OMe)3][(R,R)-DPEN] (DPEN = 1,2-diphenylethylenediamine) on SBA-15. During the asymmetric hydrogenation of various aromatic ketones under 40 atm H2, both catalysts exhibited high catalytic activities (more than 97% conversions) and moderate enantioselectivities (33–54% ee). Furthermore, the chiral Rh catalyst 5 could be easily recovered and used repetitively five times without significantly affecting its catalytic activity and enantioselectivity. A catalytic comparison of the mesoporous silica-supported chiral Rh catalyst 4 prepared by a postmodification method is also discussed.  相似文献   

17.
Two dinuclear molecule-bridged Cu(I) complexes, (μ-bpym)[Cu(PPh3)Cl]2 (1), [(μ-bpym)(CuL)2](ClO4)2·(CH3CN)2(H2O) (2) (bpym = 2,2′-bipyrimidine, L = (R)-(+)-2,2′-bis(diphenylphospho)-1,1′-dinaphthalene) have been synthesized and characterized. The molecular structures of the two new dinuclear compounds exhibit bridging of two copper(I) centers by the symmetrically bis-chelating bpym ligand. Intriguingly, compound 1 features a remarkable “intramolecular organic sandwich” configuration where the central 2,2′-bipyrimidine bridging ligand interacts in π/π/π fashion with two phenyl rings from the coligands above and below the central plane, while chiral compound 2 exhibits second-order nonlinear optical effect and temperature-dependent luminescence. Upon decreasing the temperature from 298 to 10 K, compound 2 shows a red light emission.  相似文献   

18.
Group 4 [η13-tert-butyl(dimethylfluorenylsilyl)amido]dimethyl complexes [t-BuNSiMe2Flu]MMe2 (M = Ti, 1; Zr, 2; Hf, 3) were synthesized in a one-pot synthesis starting from the ligand, MeLi and MCl4 (M = Ti, Zr, Hf), respectively. The structures of these complexes were determined by X-ray crystallography and the results obtained revealed that the fluorenyl ligand coordinates to center metal in a η3-manner irrespective of center metal employed. Propylene polymerization was conducted at 0 or 20 °C in toluene by 13 combined with dried methylaluminoxane (MAO), which was prepared from the toluene solutions of MAO by removing free trialkylaluminiums, and HNMe2PhB(C6F5)4 in the presence of triisobutylaluminium. The 1–dried MAO system gave the polymer with syndiotactic triad (rr) of 63% at 0 °C, whereas 2 and 3 did not give any polymer in the same conditions. The 2–dried MAO system gave the polymer with the highest syndiotacticity (rr = 97%) at 20 °C, although the activity was low. The 3–dried MAO system did not give any polymer even at 20 °C. When HNMe2PhB(C6F5)4 was used in place of dried MAO at 20 °C, 1 gave almost atactic polymer, while 2 and 3 gave highly syndiotactic one (rr > 90%). These results indicate that the catalytic performance strongly depended on the center metal of the ansa-fluorenylamidodimethyl complexes as well as cocatalysts employed.  相似文献   

19.
A new water-soluble sulfur-containing palladacyclic diaqua complex [(SC)PdII(H2O)2]2(SO4) {[1]2(SO4), SC = C6H4-2-(CH2StBu)} was synthesized from a reaction of Ag2SO4 with a water-insoluble palladacyclic dichloro complex [(SC)PdII(μ-Cl)]2 (2) in water. Water-solubility of [1]2(SO4) at pH 7 at 25 °C is 9.4 mg/mL. NH4PF6 was added to the solution of [1]2(SO4) in water to give [1](PF6). The structures of [1](PF6) and 2 were unequivocally determined by X-ray analysis.  相似文献   

20.
《Tetrahedron: Asymmetry》2007,18(23):2841-2844
The Lipolase-catalyzed ring opening of racemic 4-benzyl- 3 and 4-phenylethyl-2-azetidinone 4 was performed with 0.5 equiv of H2O in diisopropyl ether at 45 °C. The resulting (S)-β-amino acid 5 or 6 (ee  87%) and (R)-β-lactam 7 or 8 (ee >99%) enantiomers could easily be separated. The ring opening of enantiomeric β-lactams with 18% aqueous HCl afforded the corresponding enantiopure β-amino acid hydrochlorides 9 and 10 (ee >99%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号