首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Parabolic R-polynomials were introduced by Deodhar as parabolic analogues of ordinary R-polynomials defined by Kazhdan and Lusztig. In this paper, we are concerned with the computation of parabolic R-polynomials for the symmetric group. Let Sn be the symmetric group on {1,2,,n}, and let S={si|1in?1} be the generating set of Sn, where for 1in?1, si is the adjacent transposition. For a subset J?S, let (Sn)J be the parabolic subgroup generated by J, and let (Sn)J be the set of minimal coset representatives for Sn/(Sn)J. For uv(Sn)J in the Bruhat order and x{q,?1}, let Ru,vJ,x(q) denote the parabolic R-polynomial indexed by u and v. Brenti found a formula for Ru,vJ,x(q) when J=S?{si}, and obtained an expression for Ru,vJ,x(q) when J=S?{si?1,si}. In this paper, we provide a formula for Ru,vJ,x(q), where J=S?{si?2,si?1,si} and i appears after i?1 in v. It should be noted that the condition that i appears after i?1 in v is equivalent to that v is a permutation in (Sn)S?{si?2,si}. We also pose a conjecture for Ru,vJ,x(q), where J=S?{sk,sk+1,,si} with 1kin?1 and v is a permutation in (Sn)S?{sk,si}.  相似文献   

3.
Let b(n) be the number of -regular partitions of n. We show that the generating functions of b(n) with =3,5,6,7 and 10 are congruent to the products of two items of Ramanujan's theta functions ψ(q), f(q) and (q;q)3 modulo 3, 5 and 7. So we can express these generating functions as double summations in q. Based on the properties of binary quadratic forms, we obtain vanishing properties of the coefficients of these series. This leads to several infinite families of congruences for b(n) modulo 3, 5 and 7.  相似文献   

4.
5.
6.
7.
8.
This paper deals with a two-competing-species chemotaxis system with consumption of chemoattractant
{ut=d1Δu???(uχ1(w)?w)+μ1u(1?u?a1v),xΩ,t>0,vt=d2Δv???(vχ2(w)?w)+μ2v(1?a2u?v),xΩ,t>0,wt=d3Δw?(αu+βv)w,xΩ,t>0
under homogeneous Neumann boundary conditions in a bounded domain Ω?Rn (n1) with smooth boundary, where the initial data (u0,v0)(C0(Ω))2 and w0W1,(Ω) are non-negative and the parameters d1,d2,d3>0, μ1,μ2>0, a1,a2>0 and α,β>0. The chemotactic function χi(w) (i=1,2) is smooth and satisfying some conditions. It is proved that the corresponding initial–boundary value problem possesses a unique global bounded classical solution if one of the following cases hold: for i=1,2,(i) χi(w)=χ0,i>0 and
6w06L(Ω)<πdid3n+1χ0,i?2did3n+1χ0,iarctan?di?d32n+1did3;
(ii) 0<6w06L(Ω)d33(n+1)6χi6L[0,6w06L(Ω)]min?{2didi+d3,1}.Moreover, we prove asymptotic stabilization of solutions in the sense that:? If a1,a2(0,1) and u00v0, then any global bounded solution exponentially converge to (1?a11?a1a2,1?a21?a1a2,0) as t;? If a1>1>a2>0 and v00, then any global bounded solution exponentially converge to (0,1,0) as t;? If a1=1>a2>0 and v00, then any global bounded solution algebraically converge to (0,1,0) as t.  相似文献   

9.
10.
In this work, we prove the existence of convex solutions to the following k-Hessian equation
Sk[u]=K(y)g(y,u,Du)
in the neighborhood of a point (y0,u0,p0)Rn×R×Rn, where gC,g(y0,u0,p0)>0, KC is nonnegative near y0, K(y0)=0 and Rank(Dy2K)(y0)n?k+1.  相似文献   

11.
Let {ai}i=1 be a strictly increasing sequence of positive integers (ai<aj if i<j). In 1978, Borwein showed that for any positive integer n, we have i=1n1lcm(ai,ai+1)1?12n, with equality occurring if and only if ai=2i?1 for 1in+1. Let 3r7 be an integer. In this paper, we investigate the sum i=1n1lcm(ai,...,ai+r?1) and show that i=1n1lcm(ai,...,ai+r?1)Ur(n) for any positive integer n, where Ur(n) is a constant depending on r and n. Further, for any integer n2, we also give a characterization of the sequence {ai}i=1 such that the equality i=1n1lcm(ai,...,ai+r?1)=Ur(n) holds.  相似文献   

12.
《Discrete Mathematics》2006,306(19-20):2438-2449
  相似文献   

13.
14.
15.
16.
With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solutions of the following nonlinear discrete state dependent delays predator–prey systemN1(k+1)=N1(k)expb1(k)-i=1nai(k)(N1(k-τi(k,N1(k),N2(k))))αi-j=1mcj(k)(N2(k-σj(k,N1(k),N2(k))))βj,N2(k+1)=N2(k)exp-b2(k)+i=1ndi(k)(N1(k-ρi(k,N1(k),N2(k))))γi,where ai,cj,di:ZR+ are positive ω-periodic, ω is a fixed positive integer. b1,b2:ZR+ are ω-periodic and k=0ω-1bi(k)>0. τi,σj,ρi:Z×R×RR(i=1,2,,n,j=1,2,,m) are ω-periodic with respect to their first arguments, respectively. αi,βj,γi(i=1,2,,n,j=1,2,,m) are positive constants.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号