首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low energy production of Nb powders via computer-aided control (CAC) of two-electrode electrolysis of porous Nb2O5 pellets (ca. 1.0 g) has been successfully demonstrated in molten CaCl2 at 1123 K. It was observed that potentiostatic electrolysis of the oxide in a three-electrode cell led to a cell voltage, i.e. the potential difference between the working (cathode) and counter (anode) electrodes, that decreased to a low and stable value within 1-2 h of the potential application until the end of the electrolysis (up to 12 h in this work). The cell voltage varied closely according to the current change. The stabilised cell voltage was below 2.5 V when the cathode potential was more positive than that for the reduction of Ca2+, leading to much lower energy consumption than that of constant voltage (>3.0 V) two-electrode electrolysis, as previously reported. Using a computer to program the variation of the cell voltage of two-electrode electrolysis according to that observed in the potentiostatic three-electrode electrolysis (0.05 V vs. Ca/Ca2+), a Nb powder with ca. 3900 ppm oxygen was produced in 12 h, with the energy consumption being 37.4% less than that of constant voltage two-electrode electrolysis at 3.0 V. Transmission electron microscopy revealed thin oxide layers (4-6 nm) on individual nodular particles (1-5 microm) of the obtained Nb powder. The oxide layer was likely formed in post-electrolysis processing operations, including washing in water, and contributed largely to the oxygen content in the obtained Nb powder.  相似文献   

2.
3.
Zhao  Meiyu  Du  Pin  Liu  Wei  Du  Kaifa  Ma  Yongsong  Yin  Huayi  Wang  Dihua 《Journal of Solid State Electrochemistry》2022,26(3):791-798
Journal of Solid State Electrochemistry - Making a tantalum carbide (TaC) coating on Ta substrates is an effective way to improve the mechanical and anti-corrosion properties of Ta. However,...  相似文献   

4.
The electrochemical reduction of solid SiO2 (quartz) to Si is studied in molten CaCl2 at 1173 K. Experimental observations are compared and agree well with a novel penetration model in relation with electrochemistry at the dynamic conductor|insulator|electrolyte three-phase interlines. The findings show that the reduction of a cylindrical quartz pellet at certain potentials is mainly determined by the diffusion of the O(2-) ions and also the ohmic polarisation in the reduction-generated porous silicon layer. The reduction rate increases with the overpotential to a maximum after which the process is retarded, most likely due to precipitation of CaO in the reaction region (cathodic passivation). Data are reported on the reduction rate, current efficiency and energy consumption during the electroreduction of quartz under potentiostatic conditions. These theoretical and experimental findings form the basis for an in-depth discussion on the optimisation of the electroreduction method for the production of silicon.  相似文献   

5.
6.
The current Si production process is based on the high‐temperature (1700 °C) reduction of SiO2 with carbon that produces large amounts of CO2. We report an alternative low‐temperature (850 °C) process based on the reduction of SiO2 in molten CaCl2 that does not produce CO2. It utilizes an anode material (Ti4O7) capable of sustained oxygen evolution. Two types of this anode material, dense Ti4O7 and porous Ti4O7, were tested. The dense anode showed a better performance. The anode stability is attributed to the formation of a protective TiO2 layer on its surface. In situ periodic current reversal and ex situ H2 reduction could be used for extending the lifetime of the anodes. The findings show that this material can be applied as a recyclable anode in molten CaCl2. Si wires, films, and particles were deposited with this anode under different cathodic current densities. The prepared Si film exhibited ≈30–40 % of the photocurrent response of a commercial p‐type Si wafer, indicating potential use in photovoltaic cells.  相似文献   

7.
Using FFC-Cambridge Process to prepare Si from SiO2 is a promising method to prepare nanostructured and highly pure silicon for solar cells. However, the method still has many problems unsolved and the controlling effect of the cell voltage on silicon product is not clear. Here we report in this article that nano cluster-like silicon product with purity of 99.95% has been prepared by complete conversion of raw material SiO2, quartz glass plate, using constant cell voltage electrolysis FFC-Cambridge Process. By analysis of XRD, EDS, TEM, HRTEM and ICP-AES as well as the discussion from the thermodynamics calculation, the morphology and components of the product based on the change of cell voltage are clarified. It is clear that pure silicon could be prepared at the cell voltage of 1.7–2.1 V in this reaction system. The silicon material have cluster-like structure which are made of silicon nanoparticles in 20–100 nm size. Interestingly, the cluster-like nano structure of the silicon can be tuned by the used cell voltage. The purity, yield and the energy cost of silicon product prepared at the optimized cell voltage are discussed. The purity of the silicon product could be further improved, hence this method is promising for the preparation of solar grade silicon in future.  相似文献   

8.
陈野  叶克 《电化学》2008,14(2):197
应用循环伏安法和计时电流法研究了Mg(Ⅱ)在MgCl2-KCl-NaCl-CaCl2四元熔盐体系中于(Mo、W)阴极上的放电过程及其钝化行为.结果表明,W电极放电反应的可逆性比Mo电极的好.后者的计时电流曲线偏离线性特征,且其阴极钝化比W严重.  相似文献   

9.
Photoelectron energy distribution curves from solid CO2 have been determined for excitation energies from hv = 14 up to 40 eV using synchrotron radiation. A 1:1 correspondence to the gas-phase photoelectron spectrum is observed for the occupied molecular orbitals. The vertical binding energies EBv (EVAC = 0) and widths (fwhm) of the valence bands of solid CO2 are determined to be 13.0 and 0.95 eV (1πg); 16.7 and 1.1 eV (1πu); 17.6 and 0.85 eV (3σu) and 18.8 and 0.8 eV (4σg) for the individual bands respectively. The partial photoemission cross sections differ importantly from those of the gas phase in exhibiting pronounced maxima at 5.2 eV (1πg), 4.4–5.3 eV (1πu + 3σu) and 4.2 eV (4σg) above the vacuum level, which is attributed to effects of high density of final (conduction-band) states. Further weaker maxima are observed at higher photon energies. Contrary to the case for the gas phase, the resonances are unperturbed in the solid by degenerate autoionizing molecular Rydberg states. The molecular origin of the resonances in the continuum is discussed and related to X-ray absorption spectra, electron-scattering data and to theoretical cross-section calculations. It is shown that the same set of resonances is observed in the different experiments. The resonances occur however at different energies due to different Coulomb interactions. The photoemission results presented provide also a key to the hitherto unexplained optical spectrum of solid CO2 in the VUV range, making possible an assignment of the structures observed to Frenkel-type excitons (hv ≤ 15 eV) and interband transitions (hv ? 15 eV).  相似文献   

10.
Nano-layered sorbents for CO(2) capture, for the first time, were developed using layer-by-layer nanoassembly. A CO(2)-adsorbing polymer and a strong polyelectrolyte were alternately immobilized within porous particles. The developed sorbents had fast CO(2) adsorption and desorption properties and their CO(2) capture capacity increased with increasing nano-layers of the CO(2)-adsorbing polymer.  相似文献   

11.
<正>Introduction In a joint co ntribution amo ng many Chinese research Institutes,a recent paper published on Nature Catalysis reported the use of sulfur vacancy-rich MoS2 as a novel catalyst for the hydrogenation of CO2 to methanol [1].  相似文献   

12.
固体氧化物电解池是一种高效、环境友好型的能量转换器件,可以直接将电能转化为化学能. 本文介绍了近年来作者课题组在固体氧化物电解池直接用于CO2还原的研究进展,并以阴极材料为主着重讨论了金属陶瓷电极和混合导电型钙钛矿氧化物电极的研究工作,最后展望了未来固体氧化物电解池直接电解CO2的研究思路和方向.  相似文献   

13.
固态氧化物阴极在氯化钙熔盐电解质中的脱氧速率可依据氧离子的稳态扩散模型(PRS模型)由固态氧化物阴极孔隙率P,还原后金属与还原前氧化物之间的摩尔体积比R,还原后阴极的体积收缩率S等参数直接计算. PRS模型重要意义还在于可提供极简单的公式以预测不同金属氧化物还原时固态阴极的优化孔隙率,而固态阴极孔隙率对其脱氧速率有显著影响. 对于Ta2O5电解,其固态阴极孔隙率不易大于50%. 相关理论预测结果得到了固态Ta2O5在氯化钙熔盐中电解实验的良好验证,表明PRS模型对固态化合物阴极的快速、高效电解具有重要的指导意义.  相似文献   

14.
The oxidation behavior of nickel in Li+K carbonate melt is followed by measuring the open-circuit potential and by electrochemical impedance spectroscopy under an O2+CO2 gas mixture in the ratio 90/10 at a total pressure of 1 atm at 650 °C. X-ray diffraction (XRD) and energy-dispersive spectroscopy are employed for qualitative and quantitative analyses of the different compounds involved during the oxidation of nickel. Atomic force microscopy is used for both imaging the evolution of the oxide layer and determining its surface roughness. The in situ oxidation process of nickel demonstrates three stages: rapid formation of a compact surface oxide (first stage), thicker oxide layer (second stage), and a porous oxide structure (third stage). The lithiation reaction has been identified to occur during the second stage. Formation of an intermediate and unstable compound, namely NiCO3, has been confirmed by XRD. Electronic Publication  相似文献   

15.
16.
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极。利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究。实验结果显示: Na2MoO4、半胱氨酸和GQDs的最佳原料配比为375:600:1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg·cm-2时,MoS2/GQDs碳纸电极的析氢催化能力最佳。在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率、电能回收率和整体能量回收率分别为51.15±3.15 mL·cycle-1、0.401±0.032 m3H2·m3d-1、91.16±0.054%、66.64±5.39%、72.44±2.60%、217.26±7.42%和77.37±1.50%,均略高于Pt/C阴极MEC或与之媲美。另外,MoS2/GQDs具有良好的长期稳定性,且价格便宜,有利于实际应用。  相似文献   

17.
Electrochemical nitrogen fixation under ambient conditions is promising for sustainable ammonia production but is hampered by high reaction barrier and strong competition from hydrogen evolution, leading to low specificity and faradaic efficiency with existing catalysts. Here we describe the activation of MoS2 in molten sodium that leads to simultaneous formation of a sulfur vacancy-rich heterostructured 1T/2H-MoSx monolayer via reduction and phase transformation. The resultant catalyst exhibits intrinsic activities for electrocatalytic N2-to-NH3 conversion, delivering a faradaic efficiency of 20.5% and an average NH3 rate of 93.2 μg h−1 mgcat−1. The interfacial heterojunctions with sulfur vacancies function synergistically to increase electron localization for locking up nitrogen and suppressing proton recombination. The 1T phase facilitates H–OH dissociation, with S serving as H-shuttling sites and to stabilize . The subsequently couple with nearby N2 and NHx intermediates bound at Mo sites, thus greatly promoting the activity of the catalyst. First-principles calculations revealed that the heterojunction with sulfur vacancies effectively lowered the energy barrier in the potential-determining step for nitrogen reduction, and, in combination with operando spectroscopic analysis, validated the associative electrochemical nitrogen reduction pathway. This work provides new insights on manipulating chalcogenide vacancies and phase junctions for preparing monolayered MoS2 with unique catalytic properties.

We describe the activation of MoS2 in molten sodium that leads to the simultaneous formation of a sulfur vacancy-rich heterostructured 1T/2H-MoSx monolayer electrocatalyst via reduction and phase transformation.  相似文献   

18.
The indirect electro-epoxidation of ethylene (C2H4), produced from CO2 electroreduction (CO2R), holds immense promise for CO2 upcycling to valuable ethylene oxide (EO). However, this process currently has a mediocre Faradaic efficiency (FE) due to sluggish formation and rapid dissociation of active species, as well as reductive deactivation of Cu-based electrocatalysts during the conversion of C2H4 to EO and CO2 to C2H4, respectively. Herein, we report a bromine-induced dual-enhancement strategy designed to concurrently promote both C2H4-to-EO and CO2-to-C2H4 conversions, thereby improving EO generation, using single-atom Pt on N-doped CNTs (Pt1/NCNT) and Br-bearing porous Cu2O as anode and cathode electrocatalysts, respectively. Physicochemical characterizations including synchrotron X-ray absorption, operando infrared spectroscopy, and quasi in situ Raman spectroscopy/electron paramagnetic resonance with theoretical calculations reveal that the favorable Br2/HBrO generation over Pt1/NCNT with optimal intermediate binding facilitates C2H4-to-EO conversion with a high FE of 92.2 %, and concomitantly, the Br with strong nucleophilicity protects active Cu+ species in Cu2O effectively for improved CO2-to-C2H4 conversion with a FE of 66.9 % at 800 mA cm−2, superior to those in the traditional chloride-mediated case. Consequently, a single-pass FE as high as 41.1 % for CO2-to-EO conversion can be achieved in a tandem system.  相似文献   

19.
In this paper, polycrystalline molybdenum disulfide (MoS2) nanoflowers were prepared by mixing ammonium molybdate tetrahydrate [(NH4)6Mo7O24·4H2O] and potassium thiocyanate (KSCN) at 300 °C for 2 h via molten salt sintering method. Under scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM), MoS2 showed popcorn-like shape, which surface distribution defects were easy to be further modified. MoS2 as a nano-enzyme was used to inhibit the proliferation of mouse breast cancer cells (4 T1), which had 69.8 % inhibitory effect on 4 T1 cell proliferation. Electron spin resonance (ESR) analysis showed that MoS2 could produce a large number of stable hydroxyl radicals (–OH). The disulfide bond in MoS2 was highly sensitive to reactive oxygen species (ROS). High ROS level leads to the death of cancer cells under oxidative stress and inhibits the proliferation of 4 T1. This work demonstrates that MoS2 is a potential anticancer drug or carrier for cancer treatment.  相似文献   

20.
《中国化学快报》2020,31(10):2803-2808
Although MoS2 has been proved to be a very ideal cocatalyst in advanced oxidation process (AOPs), the activation process of peroxymonosulfate (PMS) is still inseparable from metal ions which inevitably brings the risk of secondary pollution and it is not conducive to large-scale industrial application. In this study, the commercial MoS2, as a durable and efficient catalyst, was used for directly activating PMS to degrade aromatic organic pollutant. The commercial MoS2/PMS catalytic system demonstrated excellent removal efficiency of phenol and the total organic carbon (TOC) residual rate reach to 25%. The degradation rate was significantly reduced if the used MoS2 was directly carried out the next cycle experiment without any post-treatment. Interestingly, the commercial MoS2 after post-treated with H2O2 can exhibit good stability and recyclability for cyclic degradation of phenol. Furthermore, the mechanism for the activation of PMS had been investigated by density functional theory (DFT) calculation. The renewable Mo4+ exposed on the surface of MoS2 was deduced as the primary active site, which realized the direct activation of PMS and avoided secondary pollution. Taking into account the reaction cost and efficient activity, the development of commercial MoS2 catalytic system is expected to be applied in industrial wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号