首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate capability and cyclic performance of the LiNi0.5Mn1.5O4 under high current density have been significantly improved by doping a small amount of ruthenium (Ru). Specifically, Li1.1Ni0.35Ru0.05Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 synthesized by solid state reaction can respectively deliver a discharge capacity of 108 and 117 mAh g?1 at 10 C rate between 3 and 5 V. At 10 C charge/discharge rate, Li1.1Ni0.35Ru0.05Mn1.5O4 and LiNi0.4Ru0.05Mn1.5O4 can respectively maintain 91% and 84% of their initial capacity after 500 cycles, demonstrating that Ru-doping could be a way to enhance the electrochemical performance of spinel LiNi0.5Mn1.5O4.  相似文献   

2.
Sulfone-based electrolytes have been investigated as electrolytes for lithium-ion cells using high-voltage positive electrodes, such as LiMn2O4 and LiNi0.5Mn1.5O4 spinels, and Li4Ti5O12 spinel as negative electrode. In the presence of imide salt (LiTFSI) and ethyl methyl sulfone or tetramethyl sulfone (TMS) electrolytes, the Li4Ti5O12/LiMn2O4 cell exhibited a specific capacity of 80 mAh g?1 with an excellent capacity retention after 100 cycles. In a cell with high-voltage LiNi0.5Mn1.5O4 positive electrode and 1 M LiPF6 in TMS as electrolyte, the capacity reached 110 mAh g?1 at the C/12 rate. When TMS was blended with ethyl methyl carbonate, the Li4Ti5O12/LiNi0.5Mn1.5O4 cell delivered an initial capacity of 80 mAh g?1 and cycled fairly well for 1000 cycles under 2C rate. The exceptional electrochemical stability of the sulfone electrolytes and their compatibility with the Li4Ti5O12 safer and stable anode were the main reason behind the outstanding electrochemical performance observed with high-potential spinel cathode materials. These electrolytes could be promising alternative electrolytes for high-energy density battery applications such as plug-in hybrid and electric vehicles that require a long cycle life.  相似文献   

3.
Single phase LiCr0.2Ni0.4Mn1.4O4 spinel has been synthesized by a simple sucrose assisted combustion method that yields highly crystalline homogeneous sub-micrometric samples (650 nm). The LiCr0.2Ni0.4Mn1.4O4, with capacity retention of 92% at 60 C discharge rate, shows the highest rate capability among LiNi0.5Mn1.5O4-type cathodes. It delivers very high-power (34.8 kW kg?1 at 60 C). Studies developed at 55 °C demonstrate that LiCr0.2Ni0.4Mn1.4O4 retains huge rate capability and large cycleability at high temperature.  相似文献   

4.
A series of lithium–manganese–nickel-oxide compositions that can be represented in three-component notation, xLi[Mn1.5Ni0.5]O4 · (1  x){Li2MnO3 · Li(Mn0.5Ni0.5)O2}, in which a spinel component, Li[Mn1.5Ni0.5]O4, and two layered components, Li2MnO3 and Li(Mn0.5Ni0.5)O2, are structurally integrated in a highly complex manner, have been evaluated as electrodes in lithium cells for x = 1, 0.75, 0.50, 0.25 and 0. In this series of compounds, which is defined by the Li[Mn1.5Ni0.5]O4–{Li2MnO3 · Li(Mn0.5Ni0.5)O2} tie-line in the Li[Mn1.5Ni0.5]O4–Li2MnO3–Li(Mn0.5Ni0.5)O2 phase diagram, the Mn:Ni ratio in the spinel and the combined layered Li2MnO3 · Li(Mn0.5Ni0.5)O2 components is always 3:1. Powder X-ray diffraction patterns of the end members and the electrochemical profiles of cells with these electrodes are consistent with those expected for the spinel Li[Mn1.5Ni0.5]O4 (x = 1) and for ‘composite’ Li2MnO3 · Li(Mn0.5Ni0.5)O2 layered electrode structures (x = 0). Electrodes with intermediate values of x exhibit both spinel and layered character and yield extremely high capacities, reaching more than 250 mA h/g with good cycling stability between 2.0 V and 4.95 V vs. Li° at a current rate of 0.1 mA/cm2.  相似文献   

5.
The cathode material LiNi0.5Mn1.5O4 for lithium-ion batteries has been studied with confocal micro-X-ray fluorescence (CMXRF) combined with X-ray absorption near edge structure (XANES) at the Mn-K edge and the Ni-K edge. This technique allows for a non-destructive, spatially resolved (x, y and z) investigation of the oxidation states of surface areas and to some extent of deeper layers of the electrode. Until now CMXRF-XANES has been applied to a limited number of applications, mainly geo-science. Here, we introduce this technique to material science applications and show its performance to study a part of a working system. A novel mesoporous LiNi0.5Mn1.5O4 material was cycled (charged and discharged) to investigate the effects on the oxidation states at the cathode/electrolyte interface. With this approach the degradation of Mn3 + to Mn4 + only observable at the surface of the electrode could be directly shown. The spatially resolved non-destructive analysis provides knowledge helpful for further understanding of deterioration and the development of high voltage battery materials, because of its nondestructive nature it will be also suitable to monitor processes during battery cycling.  相似文献   

6.
ZnO-coated LiNi0.5Mn1.5O4 powders with excellent electrochemical cyclability and structural stability have been synthesized. The electrochemical performance and structural stability of ZnO-coated LiNi0.5Mn1.5O4 electrodes in the 5 V region at elevated temperature has been studied as function of the level of ZnO coating. The 1.5 wt% ZnO-coated LiNi0.5Mn1.5O4 electrode delivers an initial discharge capacity of 137 mAh g−1 with excellent cyclability at elevated temperature even at 55 °C. The reason for the excellent cycling performance of ZnO-coated LiNi0.5Mn1.5O4 electrode is largely attributed to ZnO playing an important role of HF getting in the electrolyte.  相似文献   

7.
This study demonstrates that proper SEI layer on graphite anode is essential in LiNi0.5Mn1.5O4(LNMO)/graphite 5 V lithium-ion batteries. Succinic anhydride (SA) and 1,3-propane sultone (PS) were found to greatly extend cycle life and suppress swelling behavior of LNMO/graphite cells. The benefits of SA and PS were ascribed not only to the stable SEI layer they form on graphite but also to their stability toward the oxidation at high voltage. Using 1 M LiPF6 EC/EMC (1/2, v/v) solutions with SA and PS, LNMO/graphite Al-laminated pouch cell with nominal capacity of 600 mA h exhibited about 80% capacity retention after 100 cycles. This is the first report on the successful LNMO/graphite 5 V LIB to our best knowledge.  相似文献   

8.
LiMn_2O_4 and LiNi_xAlyMn_(2-x-y)O_4(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMn_2O_4 and LiNi_xAl_yMn_(2-x-y)O_4 fortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMn_2O_4 shows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMn_2O_4 samples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNi_(0.5)Al_(0.05)Mn_(1.45)O_4 delivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMn_2O_4 and LiNi_(0.5)Al_(0.05)Mn_(1.45)O_4 depict the high and low real polarization of 1562 and 1100 Ω.  相似文献   

9.
LiMn2O4 spinel nanorods prepared from nanowire MnO2 templates were capped with polyvinyl pyrrolidone (PVP) and coated with ZrC2O4 precursors in aqueous solution. Upon annealing at 600 °C in air, an amorphous ZrO2 nanoscale coating layer was obtained on the spinel nanoparticles with a particle size of <100 nm that formed from the splitting of the original spinel nanorods. The electrochemical cycling results clearly showed that nanoscale ZrO2 coating significantly improved the rate capability and cycle life at 65 °C in spite of very high surface area of the spinel nanoparticles.  相似文献   

10.
The effect of different membranes and aluminum current collectors on the initial coulombic efficiency of LiNi0.5Mn1.5O4/Li was investigated, and the cycling performance at different rates and temperatures and the storage performance at 60 °C for a week are discussed for LiNi0.5Mn1.5O4/Li. The results show that the lower initial coulombic efficiency is associated with the lower decomposition voltage of the commercial membrane and electrolyte, and the instability of aluminum current collector under the higher voltage. In addition, both versions of LiNi0.5Mn1.5O4 can deliver about 115 mA?h g?1 of initial discharge capacity at 1 C at 25 °C and 60 °C; however, it retains only 61.57 % of its initial capacity after the 130th cycles at 60 °C, which is much lower than the 94.46 % rate observed for LiNi0.5Mn1.5O4 at 25 °C, and the cycling performance of the material at 1 C is better than that at 0.5 C. Meanwhile, the initial discharge capacity at 0.1 C after storing at 60 °C is 119.3 mA?h g?1, which is only a little lower than 121.5 mA?h g?1 recorded before storing; moreover, the spinel structure and surface state of LiNi0.5Mn1.5O4 after storing at 60 °C has not been changed basically. These results indicate that the electrochemical stability of electrolyte is also related to the temperature. The serious capacity fading of LiNi0.5Mn1.5O4 at 60 °C is attributed to the severe oxidation decomposition and the thermal decomposition in the range of cut-off voltage of the materials, and then the decomposition products interact with active materials to form a solid interface phase, leading to the larger electrode polarization and irreversible capacity loss. Meanwhile, the worse cycling performance at 0.5 C than that at 1 C is attributed to the longer interaction time between the electrolyte and the active materials. However, the storage performance of LiNi0.5Mn1.5O4 corresponds to the thermal stability of electrolyte to a certain extent.  相似文献   

11.
Zn-doped α-FeOOH nanofiber was synthesized by coprecipitation method. Then the α-FeOOH was enwraped by the complex of the Mn2+ and citric acid. The morphology of α-FeOOH did not transform after the calcination process and Mn0.5Zn0.5Fe2O4 nanofiber was successfully prepared. The phase, morphology, particle diameter and the magnetic properties of samples were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicated that Mn0.5Zn0.5Fe2O4 nanofibers with an aspect ratio over 40 and a diameter of 20 nm were prepared. Compared with the amorphous Mn0.5Zn0.5Fe2O4, the anisotropy of the Mn0.5Zn0.5Fe2O4 nanofiber increased, resulting in the higher coercivity and magnetization of the obtained sample. With an increase in the calcination temperature, the diameter and the saturation magnetization of the sample increased, while the aspect ratio and coercivity decreased. The coercivity of the sample obtained at 700 °C was maximal (up to 185.4 Oe). The saturation magnetization of the sample obtained at 900 °C was maximal (up to 65.3 emu/g). The use of citric acid method prevented the presence of Mn(OH)2, resulting in the decrease of the calcination temperature.  相似文献   

12.
Cathode materials LiNi0.5Mn1.5O4 and LiNi0.5 ? x/2La x Mn1.5 ? x/2O4 (x = 0.04, 0.1, 0.14) were successfully prepared by the sol-gel self-combustion reaction (SCR) method. The X-ray diffraction (XRD) patterns indicated that, a few of doping La ions did not change the structure of LiNi0.5Mn1.5O4 material. The scanning electronic microscopy (SEM) showed that the sample heated at 800°C for 12 h and then annealed at 600°C for 10 h exhibited excellent geometry appearance. A novel electrolyte system, 0.7 mol L?1 lithium bis(oxalate)borate (LiBOB)-propylene carbonate (PC)/dimethyl carbonate (DMC) (1: 1, v/v), was used in the cycle performance test of the cell. The results showed that the cell with this novel electrolyte system performed better than the one with traditional electrolyte system, 1.0 mol L?1 LiPF6-ethylene carbonate (EC)/DMC (1: 1, v/v). And the electrochemical properties tests showed that LiNi0.45La0.1Mn1.45O4/Li cell performed better than LiNi0.5Mn1.5O4/Li cell at cycle performance, median voltage, and efficiency.  相似文献   

13.
The rate capability of high capacity xLi2MnO3 · (1 ? x)LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries has been significantly enhanced by stabilizing the electrode surface by reaction with a Li–Ni–PO4 solution, followed by a heat-treatment step. Reversible capacities of 250 mAh/g at a C/11 rate, 225 mAh/g at C/2 and 200 mAh/g at C/1 have been obtained from 0.5Li2MnO3 · 0.5LiNi0.44Co0.25Mn0.31O2 electrodes between 4.6 and 2.0 V. The data bode well for their implementation in batteries that meet the 40-mile range requirement for plug-in hybrid vehicles.  相似文献   

14.
This paper emphasises the electrochemical and catalytic properties of a Ni–10% GDC (10% gadolinium-doped ceria) cermet anode of a single-chamber solid oxide fuel cell (SC-SOFC). Innovative coupling of electrochemical impedance spectroscopy with gas chromatography measurements was carried out to characterise the anode material using an operando approach. The experiments were conducted in a symmetric anode/electrolyte/anode cell prepared by slurry coating resulting in 100 μm-thick anode layers. The electrochemical performance was assessed using a two-electrode arrangement between 400 °C and 650 °C, in a methane-rich atmosphere containing CH4, O2 and H2O in a 14:2:6 volumetric ratio. The insertion of a Pt–CeO2 based catalyst with high specific surface area inside the cermet layer was found to promote hydrogen production from the Water Gas Shift reaction and consequently to improve the electrochemical performances. Indeed, a promising polarisation resistance value of 12 Ω cm2 was achieved at 600 °C with a catalytic loading of only 15 wt.%.  相似文献   

15.
LiNi0.8Co0.2O2 is a promising candidate to replace LiCoO2. The present paper describes the preparation of LiNi0.8Co0.2O2 compounds from nitrate sources and sucrose (or sugar) by the sucrose combustion process (SCP), which involves application of a conventional combustion method. In the proposed approach, sucrose serves as a fuel, a dispersing agent, and a precipitation suppressant. Precursors were made via a combustion reaction, and LiNi0.8Co0.2O2 was subsequently synthesized by heat treatment at 800 °C for 16 h in oxygen atmosphere. The initial discharge capacity was 175 mA h/g when a cell was operated at 2.7–4.3 V at 0.5 C-rate. Furthermore, it shows good cycling stability. When increased amount of sucrose were added as a start material, the final calcined powder displayed smaller particle size and better discharge capacity. It is expected that optimization of the heat treatment conditions would yield LiNi0.8Co0.2O2 with excellent properties. Furthermore, SCP is expected to be applicable to the production of various materials.  相似文献   

16.
All-solid-state phosphate symmetric cells using Li3V2(PO4)3 for both the positive and negative electrodes with the phosphate Li1.5Al0.5Ge1.5(PO4)3 as the solid electrolyte were proposed. Amorphous Li1.5Al0.5Ge1.5(PO4)3 was added into the electrode to increase the interface area between the active materials and the electrolyte. Any other phases were not formed at the electrode/electrolyte interface even after hot pressing at 600 °C. The discharge capacity was 92 mAh g? 1 at 22 µA cm? 2 at 80 °C, and 38 mAh g? 1 at 25 °C, respectively. Symmetric cell configuration leads to simplify the fabrication process for all-solid-state batteries and will reduce manufacturing costs.  相似文献   

17.
Lithium-rich Li1.05Mn2O4 hollow nanospheres have been successfully prepared by air-calcining lithiated MnO2 precursor at a low temperature of 550 °C, which was synthesized by chemical lithiation of hollow MnO2 nanospheres with LiI at 70 °C for 12 h. The lithium-rich Li1.05Mn2O4 hollow nanospheres exhibit an excellent cycling stability and rate capability as a cathode material for rechargeable lithium batteries: it maintains 90% of its initial capacity after 500 cycles, and keeps 70% of the reversible capacity at 0.1 C rat, even at 15 C rate.  相似文献   

18.
Three samples, LiNi0.5Mn1.5O4, LiNi0.4Mn1.4Co0.2O4, and LiNi0.4Mn1.4Cr0.15Co0.05O4, were prepared by sol–gel method and characterized by powder X-ray diffraction, Fourier transformed infrared spectroscope, scanning electron microscopy, Brunauer–Emmett–Teller surface area, four-probe resistance, cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge test. It is found that the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4 exhibits an improved performance compared with the Co-doped sample LiNi0.4Mn1.4Co0.2O4 and the undoped sample LiNi0.5Mn1.5O4, especially at elevated temperature. At 25 °C, the discharge capacity of LiNi0.4Mn1.4Cr0.15Co0.05O4 is 130 mAh g?1 at 0.1 C and 103 mAh g?1 at 10 C. At an elevated temperature (55 °C), its 1 C discharge capacity is 136 mAh g?1 and maintains 95.6 % of its initial capacity after 100 cycles. Compared with the reported results of LiNi0.4Mn1.4Co0.2O4 and LiNi0.475Mn1.475Co0.05O4, the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4, with least content of Co, 0.05, possesses not only the high C-rate capacity but also the structural stability. The mechanism on the electrochemical performance improvement of LiNi0.5Mn1.5O4 by the co-doping was discussed.  相似文献   

19.
Spinel LiNi0.5Mn1.5O4 cathode material is a promising candidate for next-generation rechargeable lithium-ion batteries. In this work, BiFeO3-coated LiNi0.5Mn1.5O4 materials were prepared via a wet chemical method and the structure, morphology, and electrochemical performance of the materials were studied. The coating of BiFeO3 has no significant impact on the crystal structure of LiNi0.5Mn1.5O4. All BiFeO3-coated LiNi0.5Mn1.5O4 materials exhibit cubic spinel structure with space group of Fd3m. Thin BiFeO3 layers were successfully coated on the surface of LiNi0.5Mn1.5O4 particles. The coating of 1.0 wt% BiFeO3 on the surface of LiNi0.5Mn1.5O4 exhibits a considerable enhancement in specific capacity, cyclic stability, and rate performance. The initial discharge capacity of 118.5 mAh g?1 is obtained for 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 with very high capacity retention of 89.11% at 0.1 C after 100 cycles. Meanwhile, 1.0 wt% BiFeO3-coated LiNi0.5Mn1.5O4 electrode shows excellent rate performance with discharge capacities of 117.5, 110.2, 85.8, and 74.8 mAh g?1 at 1, 2, 5, and 10 C, respectively, which is higher than that of LiNi0.5Mn1.5O4 (97.3, 90, 77.5, and 60.9 mAh g?1, respectively). The surface coating of BiFeO3 effectively decreases charge transfer resistance and inhibits side reactions between active materials and electrolyte and thus induces the improved electrochemical performance of LiNi0.5Mn1.5O4 materials.  相似文献   

20.
A VO2 · 0.43H2O powder with a flaky particle morphology was synthesized via a hydrothermal reduction method. It was characterized by scanning electron microscopy, electron energy loss spectroscopy, and thermogravimetric analysis. As an electrode material for rechargeable lithium batteries, it was used both as a cathode versus lithium anode and as an anode versus LiCoO2, LiFePO4 or LiNi0.5Mn1.5O4 cathode. The VO2 · 0.43H2O electrode exhibits an extraordinary superiority with high capacity (160 mAh g?1), high energy efficiency (95%), excellent cyclability (142.5 mAh g?1 after 500 cycles) and rate capability (100 mAh g?1 at 10 C-rate).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号