首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrochemical DNA sensor has been fabricated by immobilizing thiolated single stranded oligonucleotide (ssDNA) probe onto gold (Au) coated glass electrode for meningitis detection using hybridization with complementary DNA (CtrA) in presence of methylene blue (MB). These electrodes (ssDNA/Au and dsDNA/Au) have been characterized using atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) technique. The DNA/Au electrode can detect the complementary DNA in the range of 7–42 ng/μl in 5 min (hybridization) with response time 60 s and electrode is stable for about 4 months when stored at 4 °C. The sensitivity of dsDNA/Au electrode is 115.8 μA/ng with 0.917 regression coefficient (R).  相似文献   

2.
A 3D-immunosensor based on simple and efficient trapping platform (foam Ni) combining with adsorption of gold nanoparticles and specific recognition of biological/chemical molecular has been reported for detection of sulfate-reducing bacteria (SRB) using electrochemical impedance spectroscopy (EIS). The impedance spectra were also used to characterize the successful construct and stepwise modification of the impedimetric immunosensors. This results show that a linear relationship between electron-transfer resistance (Rct) values and the logarithm of the SRB concentrations was obtained for the SRB concentration range of 2.1 × 101–2.1 × 107 cfu/ml. Additionally, the fabricated immunosensor shows a high selectivity against other bacteria.  相似文献   

3.
Robust molecular bioelectronic devices require a programmable and efficient electronic communication between biological molecules and electrodes. With proteins it is often compromised by their uncontrollable assembly on electrodes that does not provide neither uniform nor efficient electron flow between proteins and electrodes. Here, horseradish peroxidase reconstituted onto C11-alkanethiol-conjugated hemin and self-assembled onto the gold nanoparticle (NP)-modified electrodes via the exposed alkanethiol tail exhibits enhanced electron transfer (ET), proceeding via the gold NP relay with the ET rate constant approaching 115 s 1 vs. 14 s 1 shown on bare gold, by this offering an advanced controllable design of interfaces for bioelectronic devices based on heme-containing enzymes with a non-covalently bound heme.  相似文献   

4.
Fourier transform infrared (FT-IR) and UV-visible spectroscopy were used to optimize TiO2 concentration in chitosan (CS) to develop a sensitive CS/TiO2 bioactive electrode. Electrochemical impedance spectroscopy (EIS) used to measure electro-activity of these bioactive electrodes associated with enhance oligosaccharide containing –CO groups from degradation of CS molecules. This matrix has free –NH2 and –OH functional groups due to higher probability of hydrogen and covalent bonding between –OH group in CS molecules with Ti–O–Ti which supported immobilization of rabbit antibodies (IgGs) and proteins. Ochratoxin A (OTA) was detected and showed a linear response up to 10 ng/mL with CS/TiO2 bio-electrode. The OTA detection sensitivity of 7.5 mM TiO2 added CS bioactive electrode was four times higher than only CS.  相似文献   

5.
The hydrogen reaction in concentrated HCl(aq) solutions is a key reaction for the CuCl(aq)/HCl(aq) electrolytic cell. Here, electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) were used to obtain new data for the hydrogen reaction on platinum submerged in highly concentrated acidic solutions at 25 °C and 0.1 MPa. LSV and EIS data were collected for Pt in 0.5 mol/L H2SO4(aq), 1 mol/L HCl(aq) and 7.71 mol/L HCl(aq) solutions. It was found that exchange current density (j0) values varied between 1 and 2 mA/cm2. An equivalent circuit model was used to obtain comparable j0 and limiting current density values from EIS data relative to values obtained with LSV data. It was found that as the concentration of acid increased, a noticeable decrease in the performance was observed.  相似文献   

6.
In this paper, a novel biosensor was prepared by immobilizing glucose oxidase (GOx) on carbon nanotube-gold-titania nanocomposites (CNT/Au/TiO2) modified glassy carbon electrode (GCE). SEM was initially used to investigate the surface morphology of CNT/Au/TiO2 nanocomposites modified GCE, indicating the formation of the nano-porous structure which could readily facilitate the attachment of GOx on the electrode surface. Cyclic voltammogram (CV) and electrochemical impedance spectrum (EIS) were further utilized to explore relevant electrochemical activity on CNT]Au/TiO2 nanocomposites modified GCE. The observations demonstrated that the immobilized GOx could efficiently execute its bioelectrocatalytic activity for the oxidation of glucose. The biosensor exhibited a wider linearity range from 0.1 mmol L-1 to 8 mmol L^-1 glucose with a detection limit of 0.077 mmol L^- 1.  相似文献   

7.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

8.
Electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization have been used to investigate the inhibition effect of a new pyrimidine heterocyclic derivative, namely 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile (MPD) on copper corrosion in 3.5% NaCl solutions at 25 ± 1 °C. The electrochemical investigations showed that MPD gives sufficient inhibition against copper corrosion in 3.5% NaCl solutions. Potentiodynamic polarization measurements have shown that the MPD inhibit both the cathodic and anodic processes and thus it classified as mixed-type inhibitor. EIS measurements indicate that the values of constant phase elements (CPEs) tend to decrease and both charge-transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration. Electrochemical kinetic parameters obtained using EFM methods were comparable with that calculated from traditional measurements (EIS and potentiodynamic polarization). Molecular simulation technique was used to investigate the adsorption configuration of MPD on copper surface. Number of electrons transferred from MPD to the copper surface was calculated by semi-empirical quantum chemical calculations.  相似文献   

9.
A simple electrochemical method for the determination of association constants between carbohydrates and carbohydrate-binding proteins using cyclic voltammetry (CV) is described. The binding of concanavalin A (Con A) and cholera toxin (CT) to their specific α-mannose and β-galactose derivatives self-assembled on gold electrodes is electrochemically monitored with a redox probe of K3Fe(CN)6/K4Fe(CN)6. Upon binding of the proteins to the carbohydrate-modified electrodes, the redox current in CV decreases. The binding-induced change in electrochemical signal is thus used to construct Langmuir adsorption isotherm for the carbohydrate–protein interactions and to obtain the association constants. The association constants of carbohydrate–protein interactions determined by CV ((5.8 ± 1.2) × 107 M 1 for mannose–Con A, (2.6 ± 0.5) × 108 M 1 for galactose-CT) were in good agreement with those measured with electrochemical impedance spectroscopy and quartz crystal microbalance.  相似文献   

10.
The adsorption of added 2,2′-bipyridine (2,2′-BP) from 1-ethyl-2,3-dimethyl imidazolium bis(trifluoromethanesulfonyl)imide (EMMImNTf2) at an Au(111) electrode has been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Addition of 2,2′-BP to the ionic liquid clearly modifies the interfacial region as a result of the competition between 2,2′-BP and EMMImNTf2 to occupy the electrode surface. Within the region of ideal polarizability, the 2,2′-BP adlayer undergoes structural changes, shown by the presence of peaks in the CV curves. Between −0.2 V and + 0.9 V, the capacitance–potential curves obtained from EIS data present a capacity maximum depending strongly on the ac frequency, which is typical pseudo-capacitive behavior indicative of a reorganization of the interfacial layer. At more positive potentials a true capacity value close to 10 μF.cm 2 and invariant with the potential suggests that the 2,2′-BP molecules adopt a perpendicular orientation with the nitrogen atoms facing the electrode surface, similar to their adsorption on gold from aqueous solutions.  相似文献   

11.
In this work, a new biosensor was prepared through immobilization of bovine liver catalase in a photoreticulated poly (vinyl alcohol) membrane at the surface of a conductometric transducer. This biosensor was used to study the kinetics of catalase–H202 reaction and its inhibition by cyanide. Immobilized catalase exhibited a Michaelis–Menten behaviour at low H202 concentrations (< 100 mM) with apparent constant KMapp = 84 ± 3 mM and maximal initial velocity VMapp = 13.4 μS min? 1. Inhibition by cyanide was found to be non-competitive and inhibition binding constant Ki was 13.9 ± 0.3 μM. The decrease of the biosensor response by increasing cyanide concentration was linear up to 50 μM, with a cyanide detection limit of 6 μM. In parallel, electrochemical characteristics of the catalase/PVA biomembrane and its interaction with cyanide were studied by cyclic voltammetry and impedance spectroscopy. Addition of the biomembrane onto the gold electrodes induced a significant increase of the interfacial polarization resistance RP. On the contrary, cyanide binding resulted in a decrease of Rp proportional to KCN concentration in the 4 to 50 μM range. Inhibition coefficient I50 calculated by this powerful label-free and substrate-free technique (24.3 μM) was in good agreement with that determined from the substrate-dependent conductometric biosensor (24.9 μM).  相似文献   

12.
Electrochemical grafting of anthraquinone (AQ) groups to gold electrodes was carried out in acetonitrile (ACN) and in aqueous acidic media (0.05 M H2SO4). For the first time, the covalent attachment of AQ to gold is demonstrated. Electrochemical quartz crystal microbalance (EQCM), atomic force microscopy (AFM) and cyclic voltammetry (CV) were used to characterise the AQ-modified Au electrodes. Electrografting from both solutions containing the corresponding diazonium salt yielded a strongly attached AQ layer. AFM examination showed that a multilayer AQ film was formed. The CV behaviour of the modified electrodes was tested in 0.1 M KOH and a quasi-reversible response was observed.  相似文献   

13.
A protein-based electrochemical sensor for hydrogen peroxide (H2O2) was developed by an easy and effective film fabrication method where spinach ferredoxin (Fdx) containing [2Fe–2S] metal center was cross linked with 11-mercaptoundecanoic acid (MUA) on a gold (Au) surface. The surface morphology of Fdx molecules on Au electrodes was investigated by atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were employed to study the electrochemical behavior of adsorbed Fdx on Au. The interfacial properties of the modified electrode were evaluated in the presence of Fe(CN)63?/4? redox couple as a probe. From CV, a pair of well-defined and quasi-reversible redox peaks of Fdx was obtained in 10 mM, pH 7.0 Tris–HCl buffer solution at ?170 and ?120 mV respectively. One electron reduction of the [2Fe-2S]2+ cluster occurs at one of the iron atoms to give the reduced [2Fe-2S]+. The formal reduction potential of Fdx ca. ?150 mV (vs. Ag/AgCl electrode) at pH 7.0. The electron-transfer rate constant, ks, for electron transfer between the Au electrode and Fdx was estimated to be 0.12 s?1. From the electrochemical experiments, it is observed that Fdx/MUA/Au promoted direct electron transfer between Fdx and electrode and it catalyzes the reduction of H2O2. The Fdx/MUA/Au electrode displays a linear increase in amperometric current for increasing concentration of H2O2.The sensor calibration plot was linear with r2 = 0.998 with sensitivity approximately 68.24 μAm M?1 cm?2. Further, the effect of nitrite on the developed sensor was examined which does not interfere with the detection of H2O2. Finally, the addition of H2O2 on MUA/Au electrode was observed which has no effect on amperometric current.  相似文献   

14.
The role of surface oxygen groups on the kinetics of the V(II) oxidation reaction was studied on modified glassy carbon (GC) electrodes by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The reaction was found to be sensitive to the presence of oxygen groups on the electrode surface. Higher O/C ratios determined by X-ray photoelectron spectroscopy (XPS) corresponded to higher reactivities and lower charge transfer resistances measured in a 1 M V(II) electrolyte. The stability of an oxidised GC surface was also investigated in a 1 M V(II) electrolyte by potential holding and cycling experiments. It was found that after holding and cycling to successively more negative potentials up to − 0.8 V/RHE, the electrode surface lost its initial reactivity.  相似文献   

15.
This article reports a rapid method of preparing self-assembled monolayers of dodecanethiol (C12SH-SAMs) on polycrystalline gold by microwave irradiation (MWI, 650 W, duty cycle is 10%). The qualities of C12SH-SAMs were characterized by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The results show that the C12SH-SAMs formed by MWI in 120 s (C12SH-SAMsMWI,120 s) have low ionic permeability (the differential capacitance Cd values are independent of the scan rate and phase angle at 1 Hz Φ1 Hz = 89 ± 0.9°), excellent electrochemical blocking ability towards the redox probe (the current iMWI,120 s obtained from CV is lowest when compared to other SAMs and charge transfer resistance Rct = (1.15 ± 0.19) × 106 Ω cm2), and high surface coverage (99.996 ± 0.001%).  相似文献   

16.
《Fluid Phase Equilibria》2004,215(2):245-252
An apparatus based on a microwave resonant cavity has been designed and fabricated for phase behaviour measurements in lean gas condensate fluids over a wide range of temperature and pressure. The re-entrant geometry of the resonator is optimised for detecting any liquid phase present in very lean natural gases. The mode structure of the cavity has been thoroughly investigated with both analytic and finite element models. Three modes, excited by an electric field probe, are monitored when measuring a fluid contained within the resonator. The highest mode (fvac≈6.9 GHz) is used to detect dew points while the lower modes (460 MHz and 4.3 GHz) are employed for liquid volume and dielectric constant measurements. Careful microwave circuit design ensures good signal-to-noise ratios for all modes over the operating temperature range. Simulations of the resonator containing various fluids indicate that the system is over 104 times more sensitive than previous microwave systems and can detect liquid volumes as small as 5×10−6 cm3. Dew point measurements in a gas condensate fluid support this prediction.  相似文献   

17.
This paper reports a new solvent, room-temperature ionic liquid (RTIL), for the preparation of dodecanethiol self-assembled monolayers (C12SH-SAMs) on polycrystalline gold. The quality of C12SH-SAMs was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). From CV experiments, we find that the differential capacitance Cd values of the C12SH-SAM prepared in RTIL, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) containing 10 μL neat C12SH for 24 h (C12SH-SAMs[BMIM]PF6,10 μL,24 h) are independent of the scan rate, the effective thickness deff value and the average cant angle φ value of this monolayer are 18 ± 1 Å and 27 ± 4°, respectively. The difference value of the current density at −0.2 and 0.5 V (Δip) is only 0.73 ± 0.18 μA cm−2. EIS experiments show that the phase angle value at 1 Hz Φ1 Hz, the charge transfer resistance Rct value and surface coverage θ value of this C12SH-SAM are 88.2 ± 0.7°, 3.44 ± 1.91  cm2 and 99.998 ± 0.001%, respectively. These results indicate that high-quality C12SH-SAMs can be formed in [BMIM]PF6. In addition, the rate of formations of high-quality C12SH-SAMs in RTIL can be substantially improved by ultrasound.  相似文献   

18.
Electrochemical impedance spectroscopy (EIS), coupled with chemical vapour deposition (CVD) grown single-walled carbon nanotube (SWNT) network disk-shaped ultramicroelectrodes (UMEs), gives stable, very well-defined and highly reproducible EIS responses for electrolysis of a simple outer sphere redox couple (FcTMA+/2+). The resulting EIS data can be fitted accurately using a simple electrical circuit model, enabling information on double-layer capacitance, diffusion coefficient of the electroactive species and the rate constant of ET (k0) to be extracted in a single EIS experiment. These values are replicated for a range of mediator concentrations and UME sizes (in the range 25–100 μm diameter) demonstrating the robustness of the method. These initial studies bode well for impedance based electroanalysis using SWNT network UMEs.  相似文献   

19.
The reaction behaviors of various concentrations thiourea (TU) on copper electrode in 0.5 mol/L H2SO4 solution were investigated by electrochemical impedance spectroscopy (EIS) and single crystallogram. The loop at low frequency shifts negatively with the concentration of TU increasing to 0.25 mol/L in the research. It reveals the adsorption of TU converts the acidic corrosion of copper electrode to the final irreversible complexation of copper and TU. Furthermore, the dependence of irreversiblility on Cu(I)–TU complex surface coverage (θ) was discussed by an EIS mathematical model. The three-dimensional supermolecular network structure of [Cu2(NH2CSNH2)6]SO4 · H2O enhances the stability of the complex, and leads to the final irreversibility of whole reaction.  相似文献   

20.
Li(Ni1/3Co1/3Mn1/3)O2 microspheres with a tap density of 2.41 g cm−3 have been synthesized for applications in high power and high energy systems, using a simple rheological phase reaction route. Cyclic voltammograms (CV) showed no shift of anodic and cathodic peaks centred at 3.81, 3.69 V for the Ni2+/Ni4+ couple after first cycle. The results of power pulse area specific impedance (ASI) and differential scanning calorimetry (DSC) tests showed lower power impedance and increased thermal stability of the electrode at high rate. These merits mentioned above provided significant improved capacity and rate performance for Li(Ni1/3Co1/3Mn1/3)O2 microspheres, which 159, 147 mAh g−1 discharge capacity was delivered after 100 cycles between 2.5–4.6 V vs. Li at a different discharge rate of 2.5 C (500 mA g−1), 5 C and a constant 0.5 C charge rate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号