首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arnold MA  Zhou X  Petsch RS 《Talanta》1994,41(5):783-787
Feasibility is demonstrated for a novel gas-sensing, internal enzyme biosensing scheme for the selective measurement of hydrogen peroxide. Two horseradish peroxidase catalysed reactions are evaluated for the detection of hydrogen peroxide as it crosses a microporous Teflon membrane at 37 degrees C. The rate at which hydrogen peroxide crosses the membrane is determined by either a fluorescence or chemiluminescence measurement and this rate is related to the concentration of hydrogen peroxide in the sample solution. Detection limits of 0.7 mM and 10 muM are estimated for the fluorescence and chemiluminescence methods, respectively. Selectivity is demonstrated for hydrogen peroxide over ascorbic acid, uric acid and tyrosine.  相似文献   

2.
The synthesis of multivalent neoglycoconjugates with 2,6-diamino-2,6-dideoxyglucose is accomplished by a flexible Ugi multicomponent approach leading to mono-, di- and tri-valent carbohydrate clusters.  相似文献   

3.
Hemoglobin (Hb) was entrapped in a titania sol-gel matrix and used as a mimetic peroxidase to construct a novel amperometric biosensor for hydrogen peroxide. The Hb entrapped titania sol-gel film was obtained with a vapor deposition method, which simplified the traditional sol-gel process for protein immobilization. The morphologies of both titania sol-gel and the Hb films were characterized using scanning electron microscopy (SEM) and proved to be chemically clean, porous, homogeneous. This matrix provided a biocompatible microenvironment for retaining the native structure and activity of the entrapped Hb and a very low mass transport barrier to the substrates. H2O2 could be reduced by the catalysis of the entrapped hemoglobin at −300 mV without any mediator. The reagentless H2O2 sensor exhibited a fast response (less than 5 s) and sensitivity as high as 1.29 mA mM−1 cm−2. The linear range for H2O2 determination was from 5.0×10−7 to 5.4×10−5 M with a detection limit of 1.2×10−7 M. The apparent Michaelis-Menten constant of the encapsulated hemoglobin was calculated to be 0.18±0.02 mM. The stability of the biosensor was also evaluated.  相似文献   

4.
5.
Rapid detection of the hydrogen peroxide precursor of peroxide explosives is required in numerous security screening applications. We describe a highly sensitive and selective amperometric detection of hydrogen peroxide vapor at an agarose-coated Prussian-blue (PB) modified thick-film carbon transducer. The sensor responds rapidly and reversibly to dynamic changes in the level of the peroxide vapor, with no apparent carry over and with a detection limit of 6 ppbv. The remarkable selectivity of the PB-based screen-printed electrode towards hydrogen peroxide leads to effective discrimination against common beverage samples. For example, blind tests have demonstrated the ability to selectively and non-invasively identify concealed hydrogen peroxide in drinking cups and bottles. The attractive performance of the new microfabricated PB-based amperometric peroxide vapor sensor indicates great potential for addressing a wide range of security screening and surveillance applications. Figure Experimental setup (left) with three electrode electrochemical Hydrogen Peroxide sensor hanging above container of “unknown” liquid. Schematic (right) demonstrating fundamental principles of operation of the sensor.  相似文献   

6.
We report on a novel hydrogen peroxide biosensor that was fabricated by the layer-by-layer deposition method. Thionine was first deposited on a glassy carbon electrode by two-step electropolymerization to form a positively charged surface. The negatively charged gold nanoparticles and positively charged horseradish peroxidase were then immobilized onto the electrode via electrostatic adsorption. The sequential deposition process was characterized using electrochemical impedance spectroscopy by monitoring the impedance change of the electrode surface during the construction process. The electrochemical behaviour of the modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. The effects of the experimental variables on the amperometric determination of H2O2 such as solution pH and applied potential were investigated for optimum analytical performance. Under the optimized conditions, the biosensor exhibited linear response to H2O2 in the concentration ranges from 0.20 to 1.6?mM and 1.6 to 4.0?mM, with a detection limit of 0.067?mM (at an S/N of 3). In addition, the stability and reproducibility of this biosensor was also evaluated and gave satisfactory results.
Figure
A novel hydrogen peroxide biosensor was fabricated via layer-by-layer depositing approach. Thionine was first deposited on a glassy carbon electrode by electropolymerization to form a positively charged surface (PTH). Negatively charged gold nanoparticles (NPs) and positively charged horseradish peroxidase (HRP) were then immobilized onto the electrode via electrostatic adsorption.  相似文献   

7.
Wang W  Zhang TJ  Zhang DW  Li HY  Ma YR  Qi LM  Zhou YL  Zhang XX 《Talanta》2011,84(1):71-77
A novel matrix, gold nanoparticles-bacterial cellulose nanofibers (Au-BC) nanocomposite was developed for enzyme immobilization and biosensor fabrication due to its unique properties such as satisfying biocompatibility, good conductivity and extensive surface area, which were inherited from both gold nanoparticles (AuNPs) and bacterial cellulose nanofibers (BC). Heme proteins such as horseradish peroxidase (HRP), hemoglobin (Hb) and myoglobin (Mb) were successfully immobilized on the surface of Au-BC nanocomposite modified glassy carbon electrode (GCE). The immobilized heme proteins showed electrocatalytic activities to the reduction of H2O2 in the presence of the mediator hydroquinone (HQ), which might be due to the fact that heme proteins retained the near-native secondary structures in the Au-BC nanocomposite which was proved by UV-vis and IR spectra. The response of the developed biosensor to H2O2 was related to the amount of AuNPs in Au-BC nanocomposite, indicating that the AuNPs in BC network played an important role in the biosensor performance. Under the optimum conditions, the biosensor based on HRP exhibited a fast amperometric response (within 1 s) to H2O2, a good linear response over a wide range of concentration from 0.3 μM to 1.00 mM, and a low detection limit of 0.1 μM based on S/N = 3. The high performance of the biosensor made Au-BC nanocomposite superior to other materials as immobilization matrix.  相似文献   

8.
9.
A.K. Upadhyay 《Talanta》2009,79(1):38-9495
A novel amperometric biosensor for the analytical determination of hydrogen peroxide was developed. The fabrication of the biosensor was based on the coimmobilization of horseradish peroxidase (HRP), methylene green (MG) and multiwalled carbon nanotubes within ormosils; 3-aminopropyltrimethoxysilane (APTMOS), 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (ETMOS) and phenyltrimethoxysilane (PHTMOS). APTMOS determined the hydrophilicity/hydrophobicity of the ormosils and PHTMOS and ETMOS increased the physical and mechanical strength of the ormosil matrix. The ormosil modified electrodes were characterized with SEM, UV-vis spectroscopy and electrochemical methods. Cyclic voltammetry and amperometric measurements demonstrated the MG coimmobilized with HRP in this way, displayed good stability and could efficiently shuttle electrons between immobilized enzyme and electrode, and MWCNTs facilitated the electrocatalytic reduction of H2O2 at reduced over potential. The Micheaelis constant of the immobilized HRP was 1.8 mM, indicating a high affinity of the HRP to H2O2 without loss of enzymatic activity in ormosil matrix. The prepared biosensor had a fast response of H2O2, less than 10 s, and excellent linear range of concentration from 5 × 10−7 to 2 × 10−5 M with the detection limit of 0.5 μM (S/N = 3) under the optimum conditions. At the same time, the influence of solution pH, effect of enzyme amount, steady-state applied potential and temperature on the biosensor were investigated. The enzyme electrode retained about 90% of its initial activity after 30 days of storage in a dry state at 4 °C. The preparation of the developed biosensor was convenient and showed high sensitivity with good stability.  相似文献   

10.
Luca Banfi 《Tetrahedron》2008,64(6):1114-1134
An efficient and convergent Ugi synthesis of enantiomerically pure N-acyl-2,5-disubstituted pyrrolidines was coupled with an appropriate secondary transformation to give two series of bicyclic derivatives, namely hexahydro pyrrolo-oxazocinediones and -diazepinediones.  相似文献   

11.
It was found that the poly(aniline-co-p-aminophenol) film can effectively catalyze the oxidation of hydrogen peroxide in a sodium citrate buffer solution with pH 5.0. Here, we applied the copolymer to the construction of an efficient electrochemical sensor to determine the concentration of hydrogen peroxide. The sensor exhibited an excellent electrocatalytic activity toward the oxidation of H2O2, and the interferences of ascorbic acid and phenol were completely avoided. Unlike the inherent instability of enzyme, the poly(aniline-co-p-aminophenol) film-based sensor showed an outstanding stability.  相似文献   

12.
Glucose oxidase and catalase were immobilized via the Ugi reaction by means of cyclohexyl isocyanide and glutaraldehyde on a nylon net partially hydrolysed by hydrochloric acid. A specific enzyme sensor for D-glucose was made by fixing the nylon net with immobilized enzymes on the tip of a Clark-type oxygen sensor. For comparison purposes glucose oxidase and catalase were also co-immobilized in the absence of cyclohexyl isocyanide or only glucose oxidase was immobilized with and without cyclohexyl isocyanide. The prepared biosensors were characterized by the specific activity of glucose oxidase and its dependence on Ph and temperature and by the apparent Michaelis constant. The linear range of the biosensor response to the substrate concentration and the stability of the biosensor were determined. The long-term stabilities of the enzyme electrodes were compared and the advangtage of the developed method was demonstrated.  相似文献   

13.
Akgöl S  Dinçkaya E 《Talanta》1999,48(2):363-367
A biosensor for the specific determination of hydrogen peroxide was developed using catalase (EC 1.11.1.6) in combination with a dissolved oxygen probe. Catalase was immobilized with gelatin by means of glutaraldehyde and fixed on a pretreated teflon membrane served as enzyme electrode. The electrode response was maximum when 50 mM phosphate buffer was used at pH 7.0 and at 35 degrees C. The biosensor response depends linearly on hydrogen peroxide concentration between 1.0x10(-5) and 3.0x10(-3) M with a response time of 30 s. The sensor is stable for >3 months so in this period >400 assays can be performed.  相似文献   

14.
This paper describes the synthesis of a bicyclic beta-amino acid scaffold in both pure enantiomeric forms and its application as chiral auxiliary in an intramolecular version of the Ugi multicomponent reaction (U-5C-4CR) to prepare alpha-amino acid derivatives of both D- and L-series in a straightforward and very stereoselective manner. The mild conditions required for the Ugi condensation and for the removal of the chiral auxiliary make this method very attractive to prepare a wide range of differently structured N-alkylated and unalkylated amino acid derivatives.  相似文献   

15.
制备了石墨烯-壳聚糖(GR-CS)纳米复合材料,并将之与辣根过氧化物酶(HRP)混合,构建了基于石墨烯-壳聚糖-辣根过氧化物酶的生物传感器(GR-CS-HRP/GC)。探针及循环伏安研究表明,该界面具有优异的电子传导能力、较大的比表面积和良好的生物相容性,对H2O2的还原显示出较好的电催化活性,在工作电位为-0.2 V,0.05 mol/L的磷酸盐缓冲盐溶液(PBS,pH 6.8)中,该酶传感器对过氧化氢响应灵敏度高,检测范围宽,测定H2O2的线性范围为5.0×10-7~2×10-3mol/L(相关系数为0.998)。检出限为2.0×10-7mol/L(S/N=3)。并且表现出良好的稳定性和高选择性。该电极用于实际样品中H2O2的测定,结果令人满意。  相似文献   

16.
A facile strategy of an amperometric biosensor for hydrogen peroxide based on the direct electrocatalysis of hemoglobin (Hb) immobilized on gold nanoparticles (GNPs)/1,6-diaminohexane (DAH) modified glassy carbon electrode (GCE) has been described. A uniform monolayer film of DAH was initially covalently bound on a GCE surface by virtue of the electrooxidation of one amino group of DAH, and another amino group was modified with GNPs and Hb, successively. The fabrication process was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The proposed biosensor exhibited an effective and fast catalytic response to the reduction of H2O2 with good reproducibility and stability. A linear relationship existed between the catalytic current and the H2O2 concentration in the range of 1.5x10(-6) to 2.1x10(-3) M with a correlation coefficient of 0.998 (n=24). The detection limit (S/N=3) was 8.8x10(-7) M.  相似文献   

17.
Ugi condensations with O-protected hydroxylamines have been successfully performed in THF using ZnCl2 as activating agent. This synthetic strategy opens up the route to a very convergent assemblage of `internal' hydroxamic acid derivatives (N-acyl-N-hydroxypeptides).  相似文献   

18.
A 4-component Ugi reaction with a suitable isocyanide, followed by a novel secondary transformation involving a Pd(II)-mediated (R5 = H) or a Pd(0)-mediated (R5 = CO2Me) SN2' cyclization to give highly functionalized N-acyl-2-vinylpyrrolidines, is reported. The overall yields are usually good and in most cases the Pd(0)-catalyzed reaction gave the final product in almost quantitative yield.  相似文献   

19.
Tubular tetrapod magnesium oxide (tt-MgO) can be synthesized by thermal evaporation of Mg metal powder with a pre-grown tetrapod ZnO template. The morphology and structure of the tt-MgO were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. A composite prepared from tt-MgO, nafion and horseradish peroxidase was employed to modify a gold electrode to result in an electrochemical biosensor for hydrogen peroxide that displays excellent sensitivity and rapid response in the presence of hydroquinone as a mediator. Its sensitivity is 335.4 μA mM-1 cm-2, its response is linear in the range from 1.0 to 450 μM, and the detection limit is 0.3 μM. These results demonstrate that tt-MgO provides a promising material for the designs of biosensors.
Figure
Tubular tetrapod magnesium oxide (tt-MgO) can be synthesized by thermal evaporation of Mg metal powder with a pre-grown tetrapod ZnO template. A composite prepared from tt-MgO, nafion and horseradish peroxidase was employed to modify a gold electrode to result in an electrochemical biosensor for hydrogen peroxide that displays excellent sensitivity and rapid response in the presence of hydroquinone as a mediator.  相似文献   

20.
The enzyme catalase, which catalyses the decomposition of hydrogen peroxide to oxygen and water, was immobilized in a membrane by entrapping it in polyacryl amide and contacted to a Clark-type oxygen electrode. With the resulting catalase biosensor it was possible to detect the substrate hydrogen peroxide and the inhibitors fluoride and cyanide in phosphate buffer.The sensor was integrated into a flow system. In the concentration range from 5–200 mg/l a linear dependence of the peak height on the hydrogen peroxide concentration was obtained. The average decrease in activity during 30 days of storage at 6 °C was 17%. Fluoride and cyanide could be determined by measuring the inhibition of the enzymatic reaction in the same flow system. The analysis was executed in three steps; namely determination of the original activity by pumping substrate solution, inhibition of the enzyme by pumping inhibitor solution, and determination of the activity after the inhibition.The decrease in activity correlated with the inhibitor concentration of the sample, but a linear dependence was not found. The inhibition of fluoride and cyanide was both reversible, the enzyme membrane could be reactivated completely by pumping substrate solution. The detection limit was 1 mg/l for fluoride and 1.5 mg/l for cyanide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号