首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Liquid + liquid) equilibrium data for ternary and quaternary systems containing n-hexane (C6H14), toluene (C7H8), m-xylene (C8H10), propanol (C3H8O), sulfolane (C4H8SO2), and water (H2O) were measured at T = 303.15 K. Phase diagrams of {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C8H10 + (1  w1  w2)C6H14}, {w1C4H8SO2 + w2C3H8O + w3C7H8 + (1  w1  w2  w3)C6H14} and also systems containing water: {w1C4H8SO2 + w2H2O + w3C7H8 + (1  w1  w2  w3)C6H14} and {w1C4H8SO2 + w2H2O + w3C8H10 + (1  w1  w2  w3)C6H14} (w = mass fraction) were obtained at T = 303.15 K. The (liquid + liquid) equilibrium data of the systems were used to obtain interaction parameters in non-random two-liquid (NRTL) and universal quasi-chemical theory (UNIQUAC) activity coefficient models. These parameters can be used to predict equilibrium data of ternary and quaternary systems. The root mean square deviations (RMSDs) using these models were calculated and reported. The partition coefficients and the selectivity factors of solvents for extraction of toluene or m-xylene from n-hexane at T = 303.15 K are calculated and presented. The experimental selectivity factors of sulfolane for the system {w1C4H8SO2 + w2C7H8 + (1  w1  w2)C6H14} at T = 298.15 K and T = 323.15 K were taken from the literature and the influence of temperature on the extraction of toluene was also investigated. The phase diagrams for the ternary and quaternary systems including both the experimental and correlated tie lines are presented. The tie-line data of the studied systems were also correlated using the Hand equation and the correlation parameters are calculated and reported.  相似文献   

2.
《Polyhedron》2005,24(3):397-406
Four 4,4′-bipyridine α,ω-dicarboxylate coordination polymers Cu(bpy)(C5H6O4) (1), Zn(bpy)(C5H6O4) (2), Zn(bpy)(C6H8O4) (3) and Mn(bpy)(C8H12O4) · H2O (4) have been synthesized and structurally characterized by single crystal X-ray diffraction methods (bpy = 4,4-bipyridine, (C5H6O4)2− = glutarate anion, (C6H8O4)2− = adipate anion, (C8H12O4)2− = suberate anion). Their crystal structures are featured by dimeric metal units, which are co-bridged by 4,4′-bipyridine ligands and dicarboxylate anions such as glutarate, adipate and suberate anions to generate 2D layers with a (4,4) topology in 1, 2 and 4 as well as to form 3D frameworks in 3. Two 3D frameworks in 3 interpenetrate with each other to form a topology identical to the well-known Nb6F15 cluster compound. Over 5–300 K, the paramagnetic behavior of 4 follows the Curie–Weiss law χm(T  Θ) = 4.265(5) cm3 mol−1 with the Weiss constant Θ = −6.3(2) K. Furthermore, the thermal behavior of 3 and 4 is also discussed.  相似文献   

3.
An energetic coordination compound [Co2(C2H5N5)2(C7H3NO4)2(H2O)2]·2H2O (Hdatrz(C2H5N5) = 3,5-diamino-1,2,4-triazole, H2pda(C7H5NO4) = pyridine-2,6-dicarboxylic acid) has been synthesized and characterized by elemental analysis, chemical analysis, IR spectroscopy, single-crystal X-ray diffraction and thermal analysis. X-ray diffraction analysis confirmed that the compound possessed a di-nuclear unit and featured a 3D super-molecular structure. Furthermore, a reasonable thermochemical cycle was designed based on the preparation reaction of the compound and the standard molar enthalpy of dissolution of reactants and products was measured by the RD496-2000 calorimeter. Finally, the standard molar enthalpy of formation of the compound was determined to be −(2475.0 ± 3.1) kJ · mol−1 in accordance with Hess’s law. In addition, the specific heat capacity of the compound at T = 298.15 K was determined to be (1.13 ± 0.02) J · K−1 · g−1 by RD496-2000 calorimeter.  相似文献   

4.
The salt bis-tetrapropylammonium tetrachloroantimonate (III) is crystallized in the monoclinic system with the P21/c space group. The unit cell dimensions are: a = 18.1973(5) Å, b = 15.7225(4) Å, c = 13.6491(3) Å, β = 91.65(1)° and Z = 4. The vibrational spectra have been measured at room temperature by FT-infrared spectroscopy (4000–400 cm−1) on polycrystalline samples, and by FT-Raman spectroscopy (3500–30 cm−1) on monocrystals. The structure of the 2[N(C3H7)4]SbCl4 formed by two types of cations (C3H7)4N+ and two types of anions [SbCl4] was optimized by density functional theory (DFT) using the B3LYP method. Actually the values obtained by the B3LYP/LanL2MB basis with the aid of a calculation of the potential energy distribution (PED) are in good agreement with the experimental data. A root mean square (rms) difference value was calculated and the small differences between experimental and calculated modes have been interpreted by intermolecular interactions with-in the crystal. A comparison between the results of the 2[N(C3H7)4]SbCl4 compound and the simulated compounds based on the (CH3)4N+) and (C2H5)4N+ fragments, shows an increase in the wavenumber of the bands assigned to the stretching vibration of the (NC) group for the 2[N(C3H7)4]SbCl4 compound. The comparison between the [N(C3H7)4]Cl ligand and the 2[N(C3H7)4]SbCl4 compound of the infrared and Raman spectrum shows an increase in the wavenumber for the bands assigned to the stretching vibration of (CH3) and the bending vibration of (NC4) groups in the 2[N(C3H7)4]SbCl4 compound.  相似文献   

5.
Activated carbon fibers (ACFs) with high surface area and highly mesoporous structure for electrochemical double layer capacitors (EDLCs) have been prepared from polyacrylonitrile fibers by NaOH activation. Their unique microstructural features enable the ACFs to present outstanding high specific capacitance in aqueous, non-aqueous and novel ionic liquid electrolytes, i.e. 371 F g−1 in 6 mol L−1 KOH, 213 F g−1 in 1 mol L−1 LiClO4/PC and 188 F g−1 in ionic liquid composed of lithium bis(trifluoromethane sulfonyl)imide (LiN(SO2CF3)2, LiTFSI) and 2-oxazolidinone (C3H5NO2, OZO), suggesting that the ACF is a promising electrode material for high performance EDLCs.  相似文献   

6.
A flow mixing calorimeter and a vibrating-tube densimeter have been used to measure excess molar enthalpies HmE and excess molar volumes VmE of {xC2H6 +  (1   x)SF6 }. Measurements over a range of mole fractions x have been made at T =  305.65 K and T =  312.15 K and at the pressures (3.76, 4.32, 4.88 and 6.0) MPa. The pressure 3.76 MPa is close to the critical pressure of SF6, the pressure 4.88 MPa is close to the critical pressure of C2H6, and the pressure 4.32 MPa is midway between these values. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6 }, {xCO2 +  (1   x)C2H4 } and {xCO2 +  (1   x)SF6 }.  相似文献   

7.
A flow mixing calorimeter, followed by a vibrating tube densimeter, has been used to measure excess molar enthalpies HmEand excess molar volumesVmE of {xCO2 +  (1   x)SF6}. Measurements over a range of mole fraction x have been made at the temperatures T =  302.15 K and T =  305.65 K at the pressures (3.76, 5.20, 6.20, and 7.38) MPa. The lowest pressure 3.76 MPa is close to thecritical pressure of SF6 and the highest pressure 7.38 MPa is close to the critical pressure of CO 2. Measurements atx =  0.5 have been made over the pressure range (2.5 to 10.0) MPa at the temperature 301.95 K. Some of the measurements are very close to the critical locus of the mixture. The measurements are compared with the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on {xCO2 +  (1   x)C2H6} and{xCO2 +  (1   x)C2H4} . The equation was used to calculate residual enthalpies and residual volumes for the pure components and for the mixture, and inspection of the way these combine to give excess enthalpies and volumes assisted the interpretation of the pressure scan measurements.  相似文献   

8.
A heat-flow Calvet microcalorimeter was adapted for the measurement of sublimation enthalpies by the vacuum-drop method, with samples of masses in the range 1 mg to 5 mg. The electrically calibrated apparatus was tested by determining the enthalpies of sublimation of benzoic acid and ferrocene, at T =  298.15 K. The obtained results, ΔcrgHmo(C7H6O2)  =  (88.3  ±  0.5)kJ · mol  1and ΔcrgHmo(C10H10Fe) =  (73.3  ±  0.1)kJ · mol  1, are in excellent agreement with the corresponding values recommended in the literature. Subsequent application of the apparatus to the determination of the enthalpy of sublimation of η5-bis-pentamethylcyclopentadyenyl iron, at T =  298.15 K, led to ΔcrgHmo(C20H30Fe)  =  (96.8  ±  0.6)kJ · mol  1.  相似文献   

9.
A flow mixing calorimeter followed by a vibrating-tube densimeter has been used to measure excess molar enthalpies HmE and excess molar volumesVmE of {xC3H8 +  (1   x)SF6}. Measurements over a range of mole fractionsx have been made at the pressure p =  4.30 MPa at eight temperatures in the rangeT =  314.56 K to 373.91 K, in the liquid region at p =  3.75 MPa andT =  314.56 K, in the two phase region at p =  3.91 MPa andT =  328.18 K, and in the supercritical region at p =  5.0 MPa andT =  373.95 K. The measurements are compared with results from the Patel–Teja equation of state which reproduces the main features of the excess function curves as well as it does for similar measurements on{xCO2 +  (1   x)C2H6} ,{xCO2 +  (1   x)C2H4} and{xCO2 +  (1   x)SF6} reported previously.  相似文献   

10.
Electrode materials for supercapacitors are at present commonly evaluated and selected by their mass specific capacitance (CM, F g−1). However, using only this parameter may be a misleading practice because the electrode capacitance also depends on kinetics, and may not increase simply by increasing material mass. It is therefore important to complement CM by the practically accessible electrode specific capacitance (CE, F cm−2) in material selection. Poly[3,4-ethylene-dioxythiophene] (PEDOT) has a mass specific capacitance lower than other common conducting polymers, e.g. polyaniline. However, as demonstrated in this communication, this polymer can be potentiostatically grown to very thick films (up to 0.5 mm) that were porous at both micro- and nanometer scales. Measured by both cyclic voltammetry and electrochemical impedance spectrometry, these thick PEDOT films exhibited electrode specific capacitance (CE, F cm−2) increasing linearly with the film deposition charge, approaching 5 F cm−2, which is currently the highest amongst all reported materials.  相似文献   

11.
《Polyhedron》2007,26(9-11):2121-2125
The hybrid organo-inorganic compounds [Cu4(bipy)4V4O11(PO4)2]nH2O (n  5) (1), [Cu2(phen)2(PO4)(H2PO4)2(VO2) · 2H2O] (2) and [Cu2(phen)2(O3PCH2PO3)(V2O5) (H2O)]H2O (3) which present different bridging forms of the phosphate/phosphonate group, show different bulk magnetic properties. We herein analyze the magnetic behaviour of these compounds in terms of their structural parameters. We also report a theoretical study for compound (1) assuming four different magnetic exchange pathways between the copper centres present in the tetranuclear unit. For compound (1) the following J values were obtained J1 = +3.29; J2 = −0.63; J3 = −2.23; J4 = −46.14 cm−1. Compound (2) presents a Curie–Weiss behaviour in the whole range of temperature (3–300 K), and compound (3) shows a maximum for the magnetic susceptibility at 64 K, typical for antiferromagnetic interactions. These data where fitted using a model previously reported in the literature, assuming two different magnetic exchange pathways between the four copper(II) centres, with J1 = −30.0 and J2 = −8.5 cm−1.  相似文献   

12.
Solubilities of l -glutamic acid, 3-nitrobenzoic acid, p -toluic acid, calcium-l -lactate, calcium gluconate, magnesium- dl -aspartate, and magnesium- l -lactate in water were determined in the temperature range 278 K to 343 K. The apparent molar enthalpies of solution at T =  298.15 K as derived from these solubilities areΔsolHm (l -glutamic acid,msat =  0.0565 mol · kg  1)  =  30.2 kJ · mol  1,ΔsolHm (3-nitrobenzoic acid, m =  0.0188 mol · kg  1)  =  28.1 kJ · mol  1, ΔsolHm( p - toluic acid, m =  0.00267 mol · kg  1)  =  23.9 kJ · mol  1,ΔsolHm (calcium- l -lactate tetrahydrate,m =  0.2902 mol · kg  1)  =  25.8 kJ · mol  1,ΔsolHm (calcium gluconate, m =  0.0806 mol · kg  1)  =  22.1 kJ · mol  1, ΔsolHm(magnesium-dl -aspartate tetrahydrate, m =  0.1469 mol · kg  1)  =  11.5 kJ · mol  1, andΔsolHm (magnesium- l -lactate trihydrate,m =  0.3462 mol · kg  1)  =  3.81 kJ · mol  1.  相似文献   

13.
The reaction of [Cp1IrCl2]2 (Cp* = η5  C5Me5) with the tridentate 3-thiapentane-1,5-dithiolate ligand, S(CH2CH2S)2 (tpdt), led to the formation of [Cp1Ir(η3  tpdt)] (1) in 81% isolated yield. Subsequent reactions of 1 with [Cp1IrCl2]2 in 2:1 and 1:1 molar equiv ratios resulted in the formation of [Cp1Ir(μ  η2:η3  tpdt)Cp1IrCl][PF6] (2) and [Cp1Irμ  η2:η3  tpdt)Cp1IrCl][Cp1IrCl3] (3) in 86 and 79% yields, respectively, based on 1, whereas the reactions of 1 with [(COD)IrCl]2 (COD = 1,5-cyclooctadiene) in 2:1 and 1:1 molar equiv ratios resulted in the formation of the homo-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)IrCl (4) (92% yield) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Ir] [(COD)IrCl2] (5) (82% yield). Reactions between 1 and [(COD)RhCl]2, yielded the hetero-bimetallic derivatives Cp1Ir(μ  η1:η3  tpdt)(COD)RhCl (6) and [Cp1Ir(μ  η2:η3  tpdt)(COD)Rh][(COD)RhCl2] (7), in 92 and 93% yields, respectively. The reaction of 1 with methyl iodide gave mono-methylated derivative [Cp1Ir(η3-C4H8S3Me)]I (8) (93% yield). All these compounds have been comprehensively characterized.  相似文献   

14.
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/γ-Al2O3 at temperatures of 800–900 °C. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm−2 min−1. After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm−2 min−1. SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 °C for more than 100 h without failure, with ethane conversion of ∼100%, CO selectivity of >91% and oxygen permeation fluxes of 10–11 ml cm−2 min−1.  相似文献   

15.
Low-temperature heat capacities of the 9-fluorenemethanol (C14H12O) have been precisely measured with a small sample automatic adiabatic calorimeter over the temperature range between T=78 K and T=390 K. The solid–liquid phase transition of the compound has been observed to be Tfus=(376.567±0.012) K from the heat-capacity measurements. The molar enthalpy and entropy of the melting of the substance were determined to be ΔfusHm=(26.273±0.013) kJ · mol−1 and ΔfusSm=(69.770±0.035) J · K−1 · mol−1. The experimental values of molar heat capacities in solid and liquid regions have been fitted to two polynomial equations by the least squares method. The constant-volume energy and standard molar enthalpy of combustion of the compound have been determined, ΔcU(C14H12O, s)=−(7125.56 ± 4.62) kJ · mol−1 and ΔcHm(C14H12O, s)=−(7131.76 ± 4.62) kJ · mol−1, by means of a homemade precision oxygen-bomb combustion calorimeter at T=(298.15±0.001) K. The standard molar enthalpy of formation of the compound has been derived, ΔfHm(C14H12O,s)=−(92.36 ± 0.97) kJ · mol−1, from the standard molar enthalpy of combustion of the compound in combination with other auxiliary thermodynamic quantities through a Hess thermochemical cycle.  相似文献   

16.
The molar heat capacity Cp,m of 1-cyclohexene-1,2-dicarboxylic anhydride was measured in the temperature range from T=(80 to 360) K with a small sample automated adiabatic calorimeter. The melting point Tm, the molar enthalpy ΔfusHm and the entropy ΔfusSm of fusion for the compound were determined to be (343.46 ± 0.24) K, (11.88 ± 0.02) kJ · mol−1 and (34.60 ± 0.06) J · K−1 · mol−1, respectively. The thermodynamic functions [H(T)H(298.15)] and [S(T)S(298.15)] were derived in the temperature range from T=(80 to 360) K with temperature interval of 5 K. The mass fraction purity of the sample used in the adiabatic calorimetric study was determined to be 0.9928 by using the fractional melting technique. The thermal stability of the compound was investigated by differential scanning calorimeter (DSC) and thermogravimetric (TG) technique, and the process of the mass-loss of the sample was due to the evaporation, instead of its thermal decomposition.  相似文献   

17.
A new technique to prepare a palladium membrane for high-temperature hydrogen permeation was developed: Pd(C3H3)(C5H5) an organometallic precursor reacted with hydrogen at room temperature to decompose into Pd crystallites. This reaction together with sintering treatment under hydrogen and nitrogen in sequence resulted in the formation of dense films of pure palladium on the surface of the mesoporous stainless steel (SUS) support. Under H2 atmosphere the palladium membrane could be sintered at 823 K to form a skin layer inside the support pores. The hydrogen permeance was 5.16×10−2 cm3 cm−2 cm Hg−1 s−1 at 723 K. H2/N2 selectivity was 1600 at 723 K.  相似文献   

18.
The heterometallic cluster complexes {(p-Cymene)Ru[S2C2(B10H10)]}Mo(CO)2{(CO)3Ru[S2C2(B10H10)]} (2) and {(p-Cymene)Ru[Se2C2(B10H10)]}2Mo(CO)2 (3) (p-Cymene = η6-4-isopropyl-toluene) have been synthesized from the reactions of 16-electron half-sandwich ruthenium 1,2-dichalcogenolate carborane complexes (p-Cymene)Ru[E2C2(B10H10)] (E = S(1a), Se(1b)) with Mo(CO)3(Py)3 in the presence of BF3 · Et2O. The complexes of 2 and 3 were characterized by elemental analysis and IR, NMR spectra. The molecular structure of 2 has been characterized by single-crystal X-ray diffraction analysis. Complex 2 is unsymmetrical and the two Ru–Mo single bonds (2.7893(14), 2.8189(13) Å) are each supported by a symmetrically bridging o-carborane-1,2-dithiolato ligand.  相似文献   

19.
We show a great possibility of mediated enzymatic bioelectrocatalysis in the formate oxidation and the carbon dioxide (CO2) reduction at high current densities and low overpotentials. Tungsten-containing formate dehydrogenase (FoDH1) from Methylobacterium extorquens AM1 was used as a catalyst and immobilized on a Ketjen Black-modified electrode. For the formate oxidation, a high limiting current density (jlim) of ca. 24 mA cm 2 was realized with a half wave potential (E1/2) of only 0.12 V more positive than the formal potential of the formate/CO2 couple (E°′CO2) at 30 °C in the presence of methyl viologen (MV2 +) as a mediator, and jlim reached ca. 145 mA cm 2 at 60 °C. Even when a viologen-functionalized polymer was co-immobilized with FoDH1 on the porous electrode, jlim of ca. 30 mA cm 2 was attained at 60 °C with E1/2 = E°′CO2 + 0.13 V. On the other hand, the CO2 reduction was also realized with jlim  15 mA cm 2 and E1/2 = E°′CO2  0.04 V at pH 6.6 and 60 °C in the presence of MV2 +.  相似文献   

20.
A new amino acid ionic liquid (AAIL) [C3mim][Val] (1-propyl-3-methylimidazolium valine) was prepared by the neutralization method. Using the solution-reaction isoperibol calorimeter, molar solution enthalpies of the ionic liquid [C3mim][Val] with known amounts of water and with different concentrations in molality were measured at T = 298.15 K. In terms of standard addition method (SAM) and Archer’s method, the standard molar enthalpy of solution for [C3mim][Val] without water, ΔsHm = (−55.7 ± 0.4) kJ · mol−1, was obtained. The hydration enthalpy of the cation [C3mim]+, ΔH+ ([C3mim]+) = −226 kJ · mol−1, was estimated in terms of Glasser’s theory. Using the RD496-III heat conduction microcalorimeter, the molar enthalpies of dilution, ΔDHm(mi  mf), of aqueous [C3mim][Val] with various values of molality were measured. The values of ΔDHm(mi  mf) were fitted to Pitzer’s ion-interaction model and the values of apparent relative molar enthalpy, φL, calculated using Pitzer’s ion-interaction model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号