首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FexC–C hybrid material as a support for Pt anode catalyst in direct formic acid fuel cell was investigated for the first time. The resultant Pt/FexC–C catalysts were prepared by using a simple reduction reaction to load Pt on FexC–C hybrid material, which was synthesized through the carbonization of sucrose and Fe(NO3)3. It was found that the Pt/FexC–C catalysts exhibited excellent catalytic activity for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the fact that FexC–C hybrid material ameliorated the tolerance to CO adsorption of Pt and facilitated the uniform dispersion of Pt.  相似文献   

2.
The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).  相似文献   

3.
The CO poisoning of the platinum anodic catalyst which typically functions the catalytic deterioration of the direct formic acid fuel cells could be minimized with a simple modification for Pt with titanium oxide. The fabrication scheme involved the spin-coating of a Ti precursor onto a Pt thin layer that was physically sputtered onto a Si substrate. The whole assembly was subjected to a post-annealing processing to produce the TiOx layer (60 nm) in a porous structure (mostly Anatase) atop of the Pt surface. The porous nature of the TiOx layer permitted the participation of Pt in the electrocatalysis of the formic acid electro–oxidation (FAO). The annealing temperature was critical in identifying the catalytic efficiency and durability of the catalyst toward the FAO. Interestingly, if compared to bare-Pt substrates, the TiOx-modified catalysts could successfully steer the FAO toward the direct dehydrogenation (favorable and less energetic) pathway with more than an order of magnitude increase in the catalytic activity. It also provided a great opportunity for the mitigation of poisoning CO; concurrently with a lowering (~0.3 V) in the onset potential of the FAO. The scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction spectroscopy (XRD), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were all combined to evaluate, respectively, the catalyst’s morphology, composition, crystal structure and activity and further to understand the role of the TiOx in the catalytic enhancement.  相似文献   

4.
A novel composite anode catalyst layer for direct methanol fuel cell is reported in this paper. The dual-layer anode, which is based on the catalyst coated membrane technique, characterizes a morphological variety of the catalyst layer. The inner sub-layer with a dense morphology can effectively suppress methanol crossover. On the other hand, the outer sub-layer modified by the pore-forming agent, NH4HCO3 and the carbon nanotubes can enhance the electrochemical surface area and increase the catalyst utilization. The structural improvement of anode catalyst layer results in a 40% increment in maximum power density during the single cell test at 30 °C.  相似文献   

5.
制备了不同Pt/Au原子比的活性炭负载Au-Pt催化剂(Au-Pt/C),研究了Au/Pt原子比对Au-Pt/C催化剂氧还原电催化性能和抗甲酸性能的影响.结果表明,与Au/C催化剂相比,Au-Pt/C具有更好的电催化性能.当Pt/Au原子比从0/50增加到2/48时,Au-Pt/C催化剂表现出良好的氧还原电催化性能和抗...  相似文献   

6.
A design for a passive, air-breathing microfluidic fuel cell utilizing formic acid (FA) as a fuel is described and its performance characterized. The fuel cell integrates high surface area platinum (cathode) and palladium-platinum (anode) alloy electrodes within a PDMS microfluidic network that keeps them fully immersed in a liquid electrolyte. The polymer network that comprises the device also serves as a self-supporting membrane through which FA and oxygen are supplied to the alloy anode and cathode, respectively, by passive permeation from external sources. The cell is based on a planar form-factor and in its operation exploits FA concentration gradients that form across the PDMS membrane. These latter gradients allow the device to operate stably, producing a nearly constant limiting power density of ~0.2 mW/cm2, without driven laminar flow of fluids or the incorporation of an in-channel separator between the anodic and the cathodic compartments. The power output of this elementary device in air is subject to electrolyte mass transport impacts, which can be reduced for a given design rule by decreasing the internal ohmic resistance of the cell. The results suggest that operational stability can be improved by decreasing the kinetic losses imposed on the cathode side of the cell due to FA crossover and modalities for doing so, such as by increasing the efficiency of fuel capture at the anode.  相似文献   

7.
A new procedure has been successfully developed by which PtNx/C is synthesized to enhance methanol tolerance while maintaining a high catalytic activity for the oxygen-reduction reaction (ORR). The nitrogen-modified Pt surface, which is prepared using a chelating agent followed by heat treatment, exhibits considerable selectivity toward the ORR in the presence of methanol. The high methanol tolerance could be attributed to the suppression of methanol adsorption resulting from the modification of the Pt surface with nitrogen. A direct methanol fuel-cell (DMFC) test showed that a power density of up to 120 m W cm−2 was generated when PtNx/C was used as the cathode catalyst (1 mg cm−2) in 6 M methanol and oxygen at 70 °C.  相似文献   

8.
In this study, transport-limited catalyst utilization in polymer electrolyte fuel cell (PEFC) anodes is assessed via an agglomerate model with a broader view of designing ultra-low Pt loading, high performance anode. The model accounts for electrical and chemical potential-driven transport of electrons/protons and dissolved hydrogen, respectively and multi-component gas-phase transport in the catalyst layer. The model employs the kinetics of hydrogen oxidation reaction based on dual-pathway reversible reaction mechanism reported recently [J.X. Wang, T.E. springer, R.R. Adzic, J. Electrochem. Soc. 153 (2006) A1732]. The model predictions show that for conventional, randomly-structured catalyst transport limitations exist at two levels. At single-agglomerate level, the catalyst utilization is restricted by dissolved hydrogen diffusivity limiting the reaction to occur primarily in the outer shell of the agglomerate. At the catalyst layer level, the catalyst utilization is limited primarily by poor protonic conductivity. However, significant electronic potential gradients can exist in the catalyst layer thereby effectively reducing the available overpotential. Simulation results also show that by engineering the catalyst layer to overcome the transport limitations and, thereby, improving the effective catalyst utilization, high performance can be achieved in a PEFC anode at ultra-low Pt loading of 0.0225 mg/cm2.  相似文献   

9.
Entry of direct methanol fuel cells into the market requires anode catalyst with stable activity. This paper presents a novel method for stabilizing the activity by immobilizing silica on the catalytic PtRu nanoparticles. Characterization was performed by STEM-EDX, XRD, and ICP. The silica-immobilized PtRu nanoparticles showed high and stable activity toward methanol oxidation. The activity was maintained for 1000 h in sulfuric acidic solution, while the activity of the catalyst with "bare" PtRu nanoparticles decayed after 100 h, showing high durability of the silica-immobilized PtRu nanoparticles catalyst in quasi-anodic acidic environment.  相似文献   

10.
采用静电纺丝技术制备了碳纤维基纳米Pt-SnO2阳极催化剂(Pt/Sn原子比为3)。通过X射线衍射(XRD)、红外光谱(FT-IR)、扫描电子显微镜(SEM)等技术对该催化剂进行了表征,并采用循环伏安法对其在乙醇燃料电池中的阳极催化活性进行了评价。结果表明,纳米Pt-SnO2催化剂均匀地分散在碳纤维骨架上;随着烧结温度的升高,碳纤维载体的致密度越高、导电性能越好。电催化性能测试表明,烧结温度为800℃时催化剂的峰电流密度最大,达到0.11 A/cm2,抗中毒能力也最强。单电池的发电性能表明,在一定的乙醇浓度下,1.0 mL/min进样流速具有最优的发电效率。  相似文献   

11.
MoO3/Pt binary catalysts with various Mo/Pt ratios were prepared by an electrodeposition method for use as the anode in a direct methanol fuel cell. Pt was electrodeposited onto indium tin oxide (ITO) substrate, and then MoO3 was electrodeposited from an Mo-peroxo electrolyte on the top of Pt with different deposition times. The crystallinity of synthesized films was analyzed by X-ray diffraction (XRD), and the oxidation state of both the platinum and molybdenum were determined by X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM/EDS) was employed to investigate the surface morphology and composition. The catalytic activity and stability for methanol oxidation were measured using cyclic voltammetry and chronoamperometry in a mixture of 0.5 M H2SO4 and 0.5 M CH3OH aqueous solution. Electrocatalytic activity for CO oxidation was also evaluated in a 0.5-M H2SO4 solution. The addition of a proper amount of MoO3 was found to significantly improve both the catalytic activity and stability for methanol oxidation.  相似文献   

12.
In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.  相似文献   

13.
An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst.   总被引:4,自引:0,他引:4  
We report the first combined application of solid-state electrochemical NMR (EC NMR), cyclic voltammetry (CV), and potentiostatic current generation to investigate the topic of the ruthenium promotion of MeOH electro-oxidation over nanoscale platinum catalysts. The CV and EC NMR results give evidence for two types of CO: CO on essentially pure Pt and CO on Pt/Ru islands. There is no NMR evidence for rapid exchange between the two CO populations. CO molecules on the primarily Pt domains behave much like CO on pure Pt, with there being little effect of Ru on the Knight shift or on Korringa relaxation. In sharp contrast, COs on Pt/Ru have highly shifted (13)C NMR resonances, much weaker Korringa relaxation, and, at higher temperatures, they undergo thermally activated surface diffusion. For CO on Pt, the correlation observed between the 2pi* Fermi level local density of states and the steady-state current suggests a role for Ru in weakening the Pt-CO bond, thereby increasing the CO oxidation rate (current). The combined EC NMR/electrochemistry approach thus provides new insights into the promotion of CO tolerance in Pt/Ru fuel cell catalysts, in addition to providing a novel route to investigating promotion in heterogeneous catalysis in general.  相似文献   

14.
固体氧化物直接碳燃料电池阳极反应过程分析   总被引:1,自引:0,他引:1  
以氧化钇稳定的氧化锆(YSZ)为电解质组装成直接碳燃料电池(DCFC),分别以活性炭(AC)、石墨(G)、神府半焦(SC)作为DCFC燃料,研究了碳燃料的特性、电池操作温度以及阳极反应气氛等对DCFC阳极反应过程的影响。结果表明,三种碳燃料在空气、CO2气氛中氧化反应活性顺序为AC > SC > G,当三种碳材料作为DCFC燃料时,活性炭作为燃料的DCFC性能最好,半焦燃料次之,石墨作为燃料的DCFC性能最差,而且燃料反应活性与其表面含氧官能团、孔隙结构有关;DCFC的阳极反应过程存在碳燃料直接氧化为CO2、CO2与C反应转化为CO,以及CO氧化为CO2等。  相似文献   

15.
为了提高直接甲酸燃料电池(DFAFC)中炭载Pd(Pd/C)催化剂对甲酸氧化的电催化性能,用回流法制备了磷钼酸(PMA)修饰的炭载Pd(PMA-Pd/C)催化剂.并用谱学技术和电化学技术表征了催化剂的组分和结构,发现PMA通过化学作用而牢固地固定在Pd表面.由于PMA-Pd/C催化剂能抑制甲酸的自分解,因此,PMA-Pd/C催化剂对甲酸氧化的电催化性能优于Pd/C催化剂.  相似文献   

16.
AUROlite, consisting of gold supported on titania (picture shows extrudates in a steel net cage), is a robust catalyst for the production of catalyst-free HCOOH/NEt(3) adducts from H(2), CO(2), and neat NEt(3). Pure HCOOH is freed from the adducts by amine exchange.  相似文献   

17.
The electrooxidation of hydrazine and its methylderivatives (methylhydrazine and 1,1-dimethylhydrazine) on bare Pt and Pt electrode surfaces modified by underpotential metal adsorbates was studied in acetonitrile. On bare Pt, one-third of the molecules of the substances under examination undergo a two-electron oxidation to the corresponding diimides, while the remaining number of molecules act as the required proton acceptors in neutral acetonitrile. In alkaline solutions, hydrazine undergoes a quantitative four-electron oxidation process, while its methyl derivatives are oxidized quantitatively to the corresponding diimides in the same media. The pronounced inhibition effects on hydrazine oxidation caused by underpotential T1 and Pb adsorbates were interpreted in terms of a change in the chemical interaction of hydrazine molecules and the electrode surface modified by the underpotential metal adsorbates.  相似文献   

18.
Platinum-ruthenium nanoparticles stabilized within a conductive polymer matrix are prepared using microwave heating. Polypyrrole di(2-ethylhexyl) sulfosuccinate, or PPyDEHS, has been chosen for its known electrical conductivity, thermal stability, and solubility in polar organic solvents. A scalable and quick two-step process is proposed to fabricate alloyed nanoparticles dispersed in PPyDEHS. First a mixture of PPyDEHS and metallic precursors is heated in a microwave under reflux conditions. Then the nanoparticles are extracted by centrifugation. Physical characterization by TEM shows that crystalline and monodisperse alloyed nanoparticles with an average size of 2.8 nm are obtained. Diffraction data show that crystallite size is around 2.0 nm. Methanol electro-oxidation data allow us to propose these novel materials as potential candidates for direct methanol fuel cells (DMFC) application. The observed decrease in sulfur content in the polymer upon incorporation of PtRu nanoparticles may have adversely affected the measured catalytic activity by decreasing the conductivity of PPyDEHS. Higher concentration of polymer leads to lower catalyst activity. Design and synthesis of novel conductive polymers is needed at this point to enhance the catalytic properties of these hybrid materials.  相似文献   

19.
The electrochemical activity of Pt/C cathode for direct methanol fuel cell was improved by introducing NH4HCO3 to the catalyst layer as the pore-forming agent during preparation process of catalyst-coated membrane. SEM analysis revealed that NH4HCO3 contributed to the formation of additional porosity and the dispersion of the catalyst particles. The modified catalyst layer promoted the electrochemical and mass transport processes. It was suggested that the optimal weight ratio of the catalyst to NH4HCO3 was 2:3. As a result, the single cell exhibited a 21% increment in the peak power density at 50 °C, with a highest electrochemical surface area of 446 cm2 mgPt–1. However, an extremely high content of NH4HCO3 yielded discontinuous pathways for the electron transfer in the catalyst layer.  相似文献   

20.
The electrocatalytic effect of underpotential deposition of Pb and Tl on the reduction of oxygen was studied on a gold rotating-disc electrode in acetonitrile in the presence of HClO4. It was found that Pb and Tl adsorbates cause a substantial catalytic effect on oxygen reduction. The two-electron reduction of O2 to H2O2 on bare Au is transformed into a four-electron process on Au modified by Pb and Tl ad-layers. The results are discussed in terms of different O2 adsorption models and compared with those in aqueous electrolytes given in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号