首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polypyrrole (PPy) nanowire was synthesized through a surfactant mediated approach. The sulfur–polypyrrole (S–PPy) composite materials were prepared by heating the mixture of element sulfur and polypyrrole nanowire. The materials were characterized by FTIR, SEM. PPy with special morphology serves as conductive additive, distribution agent and absorbing agents, which effectively enhanced the electrochemical performance of sulfur. The initial discharge capacity of the active materials was 1222 mA h g−1 the remaining capacity is 570 mA h g−1 after 20th cycles.  相似文献   

2.
Two aliphatic thioether polymers, poly[methanetetryl-tetra(thiomethylene)] (PMTTM) and poly(2,4-dithiopentanylene) (PDTP) were designed, synthesized, characterized and tested as cathode active materials. The chemical structure of polymers was confirmed by FT-IR, FT-Raman, and XPS spectral analysis. Both polymers were found to have electrochemical activity as cathode materials for rechargeable lithium battery by the electrochemical tests. The specific capacity of PMTTM was 504 mA h g−1 at the third cycle and faded to 200 mA h g−1 after 10 cycles; PDTP showed low and stable specific capacity around 100 mA h g−1 even after 50 cycles. The specific capacity of fully saturated aliphatic thioether polymers demonstrated that thioether bonds offered energy storage. It was proposed that thioether bond was oxidized to form thioether cations with the help of ether solvents.  相似文献   

3.
The Al–Sn, which is immiscible alloy, film was prepared by e-beam deposition to explore the possibility as anode material for lithium ion batteries for the first time. The film has a complex structure with tiny Sn particles dispersed homogeneously in the Al active matrix. The diffusion coefficients of Li+ in these Al–Sn alloy films were determined to be 2.1–3.2 × 10−8 cm2/s by linear sweep voltammetry. The film electrode with high Al content (Al–33wt%Sn) delivered a high initial discharge capacity of 972.8 mA h g−1, while the film electrode with high Sn content (Al–64wt%Sn) with an initial discharge capacity of 552 mA h g−1 showed good cycle performance indicated by retaining a capacity of about 381 mA h g−1 after 60 cycles. Our preliminary results demonstrate that Al–Sn immiscible alloy is a potential candidate for anodic material of lithium ion batteries.  相似文献   

4.
Vertical arrays of one-dimensional tin nanowires on silicon dioxide (SiO2)/silicon (Si) substrates have been developed as anode materials for lithium rechargeable microbatteries. The process is complementary metal-oxide-semiconductor (CMOS) compatible for fabricating on-chip microbatteries. Nanoporous anodized aluminum oxide (AAO) templates integrated on SiO2/Si substrates were employed for fabrication of tin nanowires resulting in high surface area of anodes. The microstructure of these nanowire arrays was investigated by scanning electron microscopy and X-ray diffraction. The electrochemical tests showed that the discharge capacity of about 400 mA h g−1 could be maintained after 15 cycles at the high discharge/charge rate of 4200 mA g−1.  相似文献   

5.
Submicro/micro-scaled spherical Sn–Ni–C alloy powders synthesized from oxides of Sn and Ni via carbothermal reduction at 900 °C were examined for use as anode materials in Li-ion battery. The synthesized spherical Sn–Ni–C particles show a loose micro-sized structure and a multi-phase composition. The reaction product carbon oxide gases yielded in the carbothermal reduction process should be responsible to the loose structure characteristics of Sn–Ni–C particles. The prepared Sn–Ni–C alloy composite electrode exhibits a stable reversible capacity of 310 mA h g−1 at constant current density of 100 mA g−1, and can be retained at 290 mA h g−1 after 25 cycles. The space existing in loose particle can accommodate the large volume changes during charge/discharge cycling. The ductile component Ni plays as a buffer to relieve the mechanical stress induced by the large volume changes upon cycling. The remained carbon can prevent the aggregation between small alloy particles. All these factors contribute greatly to the excellent cycling stability of Sn–Ni–C alloy electrode. This carbothermal reduction method is simple, cheap and mass-productive, thus suitable to large scale production of alloy anode powders used for lithium ion batteries.  相似文献   

6.
The alloys Co2B were prepared by two ways of high temperature solid phase process and arc melting, the structure of the alloys was characterized by XRD and SEM. It showed that it was structure of tetragonal Co2B.The electrochemical experimental results demonstrated that the Co2B prepared by two means both showed excellent cycling stability. The initial discharge capacity of Co2B prepared by the high temperature solid phase process was 480.3 mA h g−1, there was no distinct declination after 70 charge–discharge cycles and the capacity kept about 195 mA h g−1. Co2B prepared by the high temperature solid phase process showed very good electrochemical reversibility in CV curves. The hydrogen storage mechanism was also discussed, it confirmed that the high initial capacity of Co2B prepared by the high temperature solid phase process was due to the oxidation of Co and B2O3, and it was irreversible.  相似文献   

7.
This study reports the use of a layered-type birnessite δ-MnO2 nano-flake cathode for eco-friendly zinc-ion battery (ZIB) applications. The present δ-MnO2 was prepared via the simple low temperature thermal decomposition of KMnO4. The X-ray diffraction (XRD) pattern of the samples was well indexed to the δ-MnO2 phase. Field emission SEM and TEM images of the δ-MnO2 revealed flake-like morphologies with an average diameter of 200 nm. The electrochemical properties, investigated by cyclic voltammetry and constant current charge-discharge measurements, revealed that the nano-flake cathode exhibited first discharge capacity of 122 mAh g 1 under a high current density of 83 mA g 1 versus zinc. The discharge capacity thereafter increased until it reached 252 mAh g 1 in the fourth cycle. On the hundredth cycle, the electrode registered a discharge capacity of 112 mAh g 1. Coulombic efficiencies of nearly 100% were maintained on prolonged cycling and thereby indicate the long cycle stability of the δ-MnO2. Besides, the realization of specific capacities of 92 and 30 mAh/g at high current densities of 666 and 1333 mA g−1, respectively, clearly demonstrates the decent rate capabilities of δ-MnO2 nano-flake cathode. These results may facilitate the utilization of layered-type birnessite δ-MnO2 in ZIB applications.  相似文献   

8.
High lithiation capacity at low red-ox potentials in combination with good safety characteristics makes amorphous Si as a very promising anode material for rechargeable Li batteries.Thin film silicon electrodes were prepared by DC magnetron sputtering of silicon on stainless steel substrates. Their behavior as Li insertion/extraction electrodes was studied by voltammetry and chronopotentiometry at room temperature in the ionic liquid (IL) 1-methyl-1-propylpiperidinium bis(trifluoromethylsuphonil)imide containing 1 M Li bis(trifluoromethylsuphonil)imide. Li/Si cells containing this electrolyte showed good performance with a stable Si electrodes capacity of about 3000 mA h g−1 and a relatively low irreversible capacity. Preliminary results on cycling Si–LiCoO2 cells using this IL electrolyte are also presented.  相似文献   

9.
A LiMnPO4/C composite cathode was prepared by a combination of spray pyrolysis and wet ball milling. The cathode showed stable performance at various cutoff voltages up to 4.9 V. The cutoff voltage increase up to 4.9 V allowed the achievement of a high discharge capacity in galvanostatic charge–discharge tests. The discharge capacities of 153 mAh g?1 at 0.05 C and 149 mAh g?1 at 0.1 C were achieved at room temperature; the trickle-mode discharge capacities at room temperature were 132, 120 and 91 mAh g?1 at 0.1, 1 and 5 C discharge rates, respectively. The cell exhibited a good rate capability in the galvanostatic cycling up to 5 C discharge rates at both ambient temperature and 50 °C.  相似文献   

10.
The bismuth nanosheets grown on carbon fiber cloth were designed. For sodium-ion batteries, the Bi/CFC electrode exhibited a high reversible capacity of 350 and 240 mAh g 1 after 300 cycles at 50 and 200 mA g 1, as well as a good rate capability. Besides, the electrode displayed two flat potential profiles during the charge/discharge process. The results suggest that the Bi/CFC electrode has excellent potential as an anode for sodium-ion batteries.  相似文献   

11.
This work introduces an effective, inexpensive, and large-scale production approach to the synthesis of Fe2O3 nanoparticles with a favorable configuration that 5 nm iron oxide domains in diameter assembled into a mesoporous network. The phase structure, morphology, and pore nature were characterized systematically. When used as anode materials for lithium-ion batteries, the mesoporous Fe2O3 nanoparticles exhibit excellent cycling performance (1009 mA h g 1 at 100 mA g 1 up to 230 cycles) and rate capability (reversible charging capacity of 420 mA h g 1 at 1000 mA g 1 during 230 cycles). This research suggests that the mesoporous Fe2O3 nanoparticles could be suitable as a high rate performance anode material for lithium-ion batteries.  相似文献   

12.
NiCo2O4 nanosheets supported on Ni foam were synthesized by a solvothermal method. A composite of NiCo2O4 nanosheets/Ni as a carbon-free and binder-free air cathode exhibited an initial discharge capacity of 1762 mAh g 1 with a low polarization of 0.96 V at 20 mA g 1 for sodium–air batteries. Na2O2 nanosheets were firstly observed as the discharged product in sodium–air battery. High electrocatalytic activity of NiCo2O4 nanosheets/Ni made it a promising air electrode for rechargeable sodium–air batteries.  相似文献   

13.
LiSbO3 has been synthesized by chemical mixing followed by thermal treatment at 800 °C. Field emission scanning electron microscopy revealed bar shaped multifaceted grains, 0.5–4 μm long and 0.5–1 μm wide, that cluster together as soft agglomeration. 2032 type coin cell vs Li/Li+ shows a flat charge–discharge plateau together with low Li intercalation/de-intercalation potential (0.2/0.5 V). A high discharge capacity of 580 mA h g?1 has been obtained in the 1st cycle with 100% Coulombic efficiency. About 96% of the Coulombic efficiency is retained up to the 12th cycle, but at the 15th cycle, the Coulombic efficiency drops down to 88%. AC impedance spectroscopy shows an increase in electrolyte resistance (Rs) from 4.43 Ohm after the initial cycle to 12.4 Ohm after the 15th cycle indicating a probable dissolution of Sb into the electrolyte causing the capacity fading observed.  相似文献   

14.
Li(Ni1/3Co1/3Mn1/3)O2 microspheres with a tap density of 2.41 g cm−3 have been synthesized for applications in high power and high energy systems, using a simple rheological phase reaction route. Cyclic voltammograms (CV) showed no shift of anodic and cathodic peaks centred at 3.81, 3.69 V for the Ni2+/Ni4+ couple after first cycle. The results of power pulse area specific impedance (ASI) and differential scanning calorimetry (DSC) tests showed lower power impedance and increased thermal stability of the electrode at high rate. These merits mentioned above provided significant improved capacity and rate performance for Li(Ni1/3Co1/3Mn1/3)O2 microspheres, which 159, 147 mAh g−1 discharge capacity was delivered after 100 cycles between 2.5–4.6 V vs. Li at a different discharge rate of 2.5 C (500 mA g−1), 5 C and a constant 0.5 C charge rate, respectively.  相似文献   

15.
Perovskite lithium lanthanum titanate (LLTO) was synthesized using sol–gel method. It shows a reversible capacity of 145 mA h g 1 and moderate cycling performance between 0.01 and 2.00 V. Cyclic voltammetry and X-ray diffraction results demonstrate a two-step solid–solution reaction behavior in the voltage range of 0.00–3.00 V upon lithium insertion/extraction. A stable solid electrolyte interphase (SEI) layer is formed on the surface of LLTO after the initial discharge. Carbon coating by chemical vapor deposition improves its cycling performance significantly.  相似文献   

16.
In this study, the lithium storage capacity of Si nanoparticles is significantly enhanced by grafting with 4-carboxyphenyl groups via diazonium salts. The modified Si anodes exhibit reversible capacities of 1173 and 527 mA h g?1 at the 1st and 50th cycle, while those of the bare Si electrodes are only 56 and 62 mA h g?1, respectively. The improved electrochemical performance is supposed to arise from the formation of a robust and flexible solid electrolyte interface on the surfaces of the modified Si nanoparticles.  相似文献   

17.
In this work, a room temperature solid-state rechargeable sodium ion cell, consisting of a ceramic Na-β″-Al2O3 thin film as the electrolyte, a NaTi2(PO4)3 gel composite as the cathode and sodium metal as the anode, was developed for the first time. A dense Na-β″-Al2O3 thin film with a thickness of approximately 100 μm was obtained by non-toxic and hazard-free ceramic fabrication processes, including tape-casting and subsequent sintering. The solid-state sodium ion cell had a working window of 1.5–2.5 V upon charge-discharge processes and exhibited an extremely stable voltage plateau of approximately 2.1 V. A reversible capacity, based on the NaTi2(PO4)3 cathode, of 133 mAh g 1 was observed during the first cycle, which remained approximately 100 mAh g 1 after 50 cycles.  相似文献   

18.
A monoclinic lithium vanadium phosphate (Li3V2(PO4)3) and carbon composite thin film (LVP/C) is prepared via electrostatic spray deposition. The film is studied with X-ray diffraction, scanning and transmission electron microscopy and galvanostatic cell cycling. The LVP/C film is composed of carbon-coated Li3V2(PO4)3 nanoparticles (50 nm) that are well distributed in a carbon matrix. In the voltage range of 3.0–4.3 V, it exhibits a reversible capacity of 118 mA h g?1 and good capacity retention at the current rate of 1 C, while delivers 80 mA h g?1 at 24 C. These results suggest a practical strategy to develop new cathode materials for high power lithium-ion batteries.  相似文献   

19.
A novel acidic cellulose–chitin hybrid gel electrolyte including binary ionic liquids (ILs) with an aqueous H2SO4 solution was prepared for an electric double layer capacitor (EDLC). Its electrochemical characteristics were investigated by galvanostatic charge–discharge measurements. The test cell with a hybrid gel electrolyte shows a specific capacitance of 162 F g?1 at room temperature, which is higher than that for a cell with an H2SO4 electrolyte, 155 F g?1. This hybrid gel electrolyte exhibits excellent high-rate discharge capability in a wide range of current densities as well as an aqueous H2SO4 solution. The discharge capacitance of the test cell can retain over 80% of its initial value in 100,000 cycles even at a high current density of 5000 mA g?1.  相似文献   

20.
A novel network composite cathode was prepared by mixing LiFePO4 particles with multiwalled carbon nanotubes for high rate capability. LiFePO4 particles were connected by multiwalled carbon nanotubes to form a three-dimensional network wiring. The web structure can improve electron transport and electrochemical activity effectively. The initial discharge capacity was improved to be 155 mA h/g at C/10 rate (0.05 mA/cm2) and 146 mA h/g at 1C rate. The comparative investigation on MWCNTs and acetylene black as a conducting additive in LiFePO4 proved that MWCNTs addition was an effective way to increase rate capability and cycle efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号