首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of electrochemically ageing hydrous nickel oxide films via slow repetitive potential multi-cycling across the main nickel (II/III) redox peak was investigated in an aqueous base environment using cyclic voltammetry and steady state polarisation curves in the oxygen evolution reaction (OER) region. Similarities between hydrous nickel oxide films and electroprecipitated ‘battery type’ nickel oxide were shown due to their similar change in redox and oxygen evolving properties as a result of film ageing. This ageing method was found to significantly enhance the OER performance of the hydrous nickel oxide electrode with the OER overpotential decreasing by 60 ± 2 mV and experiencing a 10 fold increase in OER rate for a fixed overpotential over that of an un-aged electrode. The OER turnover frequency for an aged electrode was found to be 1.16 ± 0.07 s 1 in comparison to 0.05 ± 0.003 s 1 for a hydrous nickel oxide electrode not subjected to ageing.  相似文献   

2.
The SrSc0.2Co0.8O3−δ (SSC) perovskite was investigated as a cathode material for low temperature solid-oxide fuel cell. The material showed an almost linear thermal expansion from room temperature to 1000 °C in air with the average thermal expansion coefficient of only 16.9 × 10−6 K−1. The Sc-doping made the absence of Co4+ in SSC, which resulted in not only dramatically reduced thermal expansion coefficient but also extremely high oxygen vacancies concentrations in the lattice at low temperature. The area specific polarization resistance was 0.206 Ω cm2 for SSC at 550 °C, which is about 52% lower than the value of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathode. A peak power density as high as 564 mW cm−2 was obtained at 500 °C based on a 20 μm thick Sm0.2Ce0.8O1.9 electrolyte by adopting SSC cathode.  相似文献   

3.
Micro-tubular solid-oxide fuel cell consisting of a 10-μm thick (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (ScSZ) electrolyte on a support NiO/(ScSZ) anode (1.8 mm diameter, 200 μm wall thickness) with a Ce0.8Gd0.2O1.9 (GDC) buffer-layer and a La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF)/GDC functional cathode has been developed for intermediate temperature operation. The functional cathode was in situ formed by impregnating the well-dispersed nano-Ag particles into the porous LSCF/GDC layer using a citrate method. The cells yielded maximum power densities of 1.06 W cm−2 (1.43 A cm−2, 0.74 V), 0.98 W cm−2 (1.78 A cm−2, 0.55 V) and 0.49 W cm−2 (1.44 A cm−2, 0.34 V), at 650, 600 and 550 °C, respectively.  相似文献   

4.
The molar heat capacities of GeCo2O4 and GeNi2O4, two geometrically frustrated spinels, have been measured in the temperature range from T=(0.5 to 400) K. Anomalies associated with magnetic ordering occur in the heat capacities of both compounds. The transition in GeCo2O4 occurs at T=20.6 K while two peaks are found in the heat capacity of GeNi2O4, both within the narrow temperature range between 11.4<(T/K)<12.2. Thermodynamic functions have been generated from smoothed fits of the experimental results. At T=298.15 K the standard molar heat capacities are (143.44 ± 0.14) J · K−1 · mol−1 for GeCo2O4 and (130.76 ± 0.13) J · K−1 · mol−1 for GeNi2O4. The standard molar entropies at T=298.15 K for GeCo2O4 and GeNi2O4 are (149.20 ± 0.60) J · K−1 · mol−1 and (131.80 ± 0.53) J · K−1 · mol−1 respectively. Above 100 K, the heat capacity of the cobalt compound is significantly higher than that of the nickel compound. The excess heat capacity can be reasonably modeled by the assumption of a Schottky contribution arising from the thermal excitation of electronic states associated with the CO2+ ion in a cubic crystal field. The splittings obtained, 230 cm−1 for the four-fold-degenerate first excited state and 610 cm−1 for the six-fold degenerate second excited state, are significantly lower than those observed in pure CoO.  相似文献   

5.
A perovskite-type oxide of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCFO) with mixed electronic and oxygen ionic conductivity at high temperatures was used as an oxygen-permeable membrane. A tubular membrane of BSCFO made by extrusion method has been used in the membrane reactor to exclusively transport oxygen for the partial oxidation of ethane (POE) to syngas with catalyst of LiLaNiO/γ-Al2O3 at temperatures of 800–900 °C. After only 30 min POE reaction in the membrane reactor, the oxygen permeation flux reached at 8.2 ml cm−2 min−1. After that, the oxygen permeation flux increased slowly and it took 12 h to reach at 11.0 ml cm−2 min−1. SEM and EDS analysis showed that Sr and Ba segregations occurred on the used membrane surface exposed to air while Co slightly enriched on the membrane surface exposed to ethane. The oxygen permeation flux increased with increasing of concentration of C2H6, which was attributed to increasing of the driving force resulting from the more reducing conditions produced with an increase of concentration of C2H6 in the feed gas. The tubular membrane reactor was successfully operated for POE reaction at 875 °C for more than 100 h without failure, with ethane conversion of ∼100%, CO selectivity of >91% and oxygen permeation fluxes of 10–11 ml cm−2 min−1.  相似文献   

6.
The dense dual phase composite membrane made from strontium-stabilized bismuth oxide and silver, (Bi2O3)0.74(SrO)0.26–Ag (40% v/o), was investigated. The composite was found to exhibit very high electrical conductivity at the room temperature, revealing that the silver phase has formed electron-conducting networks in the oxide matrix. The composite shows much improved oxygen permeability compared with the bismuth oxide alone. An oxygen flux of 5×10−8 mol cm−2 s−1 was observed for a 1.00 mm thick composite at 700°C with oxygen partial pressures of the feed and permeate side at 0.209, 0.0024 atm, respectively. Combination of electrical conductivity and oxygen permeation measurements reveals that oxygen-ion conduction through the oxide phase of the composite is the rate-limiting step for oxygen permeation.  相似文献   

7.
A new type of lithium ion conducting solid electrolyte based on a cubic rare earth oxide was developed by co-doping LiNO3 and KNO3 into a (Gd1−xNdx)2O3 solid, which possesses large interstitial open spaces within the structure. Among the samples prepared, 0.6(Gd0.4Nd0.6)2O3–0.16LiNO3–0.24KNO3 exhibits the highest lithium ion conductivity of 8.05 × 10−2 and 1.35 × 10−3 S cm−1 at 400 and 100 °C, respectively, which is comparable to that of the LISICON materials. Pure Li+ ion conduction was successfully demonstrated by the dc electrolysis method.  相似文献   

8.
Two pure zinc borates with microporous structure 3ZnO·3B2O3·3.5H2O and 6ZnO·5B2O3·3H2O have been synthesized and characterized by XRD, FT-IR, TG techniques and chemical analysis. The molar enthalpies of solution of 3ZnO·3B2O3·3.5H2O(s) and 6ZnO·5B2O3·3H2O(s) in 1 mol · dm−3 HCl(aq) were measured by microcalorimeter at T = 298.15 K, respectively. The molar enthalpies of solution of ZnO(s) in the mixture solvent of 2.00 cm3 of 1 mol · dm−3 HCl(aq) in which 5.30 mg of H3BO3 were added were also measured. With the incorporation of the previously determined enthalpy of solution of H3BO3(s) in 1 mol · dm−3 HCl(aq), together with the use of the standard molar enthalpies of formation for ZnO(s), H3BO3(s), and H2O(l), the standard molar enthalpies of formation of −(6115.3 ± 5.0) kJ · mol−1 for 3ZnO·3B2O3·3.5H2O and −(9606.6 ± 8.5) kJ · mol−1 for 6ZnO·5B2O3·3H2O at T = 298.15 K were obtained on the basis of the appropriate thermochemical cycles.  相似文献   

9.
Cobalt-free perovskite oxide La0.5Sr0.5Fe0.8Cu0.2O3  δ (LSFC) was applied as both anode and cathode for symmetrical solid oxide fuel cells (SSOFCs). The LSFC shows a reversible transition between a cubic perovskite phase in air and a mixture of SrFeLaO4, a K2NiF4-type layered perovskite oxide, metallic Cu and LaFeO3 in reducing atmosphere at elevated temperature. The average thermal expansion coefficient of LSFC in air is 17.7 × 10 6 K 1 at 25 °C to 900 °C. By adopting LSFC as initial electrodes to fabricate electrolyte supported SSOFCs, the cells generate maximum power output of 1054, 795 and 577 mW cm 2 with humidified H2 fuel (~ 3% H2O) and 895, 721 and 482 mW cm 2 with humidified syngas fuel (H2:CO = 1:1) at 900, 850 and 800 °C, respectively. Moreover, the cell with humidified H2 fuel demonstrates a reasonable stability at 800 °C under 0.7 V for 100 h.  相似文献   

10.
Li(Ni1/3Co1/3Mn1/3)O2 microspheres with a tap density of 2.41 g cm−3 have been synthesized for applications in high power and high energy systems, using a simple rheological phase reaction route. Cyclic voltammograms (CV) showed no shift of anodic and cathodic peaks centred at 3.81, 3.69 V for the Ni2+/Ni4+ couple after first cycle. The results of power pulse area specific impedance (ASI) and differential scanning calorimetry (DSC) tests showed lower power impedance and increased thermal stability of the electrode at high rate. These merits mentioned above provided significant improved capacity and rate performance for Li(Ni1/3Co1/3Mn1/3)O2 microspheres, which 159, 147 mAh g−1 discharge capacity was delivered after 100 cycles between 2.5–4.6 V vs. Li at a different discharge rate of 2.5 C (500 mA g−1), 5 C and a constant 0.5 C charge rate, respectively.  相似文献   

11.
A high performance cathode-supported solid oxide fuel cell (SOFC), suitable for operating in weakly humidified hydrogen and methane, has been developed. The SOFC is essentially made up by a YSZ/LSM composite supporting cathode, a thin YSZ film electrolyte, and a GDC-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode. A gas tight thin YSZ film (∼27 μm) was formed during the co-sintering of cathode/electrolyte bi-layer at 1200 °C. The cathode-supported SOFC developed in this study showed encouraging performance with maximum power density of 0.182, 0.419, 0.628 and 0.818 W cm−2 in air/3% H2O–97% H2 (and 0.06, 0.158, 0.221 and 0.352 W cm−2 in air/3% H2O–97% CH4) at 750, 800, 850 and 900 °C, respectively. Such performance is close to that of the cathode-supported cell (0.42 W cm−2 vs. 0.455 W cm−2 in humidified H2 at 800 °C) developed by Yamahara et al. [Solid State Ionics 176 (2005) 451–456] with a Co-infiltrated supporting LSM-YSZ cathode, a (Sc2O3)0.1(Y2O3)0.01(ZrO2)0.89 (SYSZ) electrolyte of 15 μm in thickness and a SYSZ/Ni anode, indicating that the performance of the GDC-impregnated LSCM anode is comparable to that made of Ni cermet while stable in weakly humidified methane fuel.  相似文献   

12.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

13.
The determination of chromium (VI) compounds in plants by electrothermal atomic absorption spectrometry (ET AAS) is proposed based on their leaching with 0.1 M Na2CO3. Due to the presence of relatively high amounts of Na2CO3 in the resulting samples, the temperature and time of pyrolysis and atomization stages must be optimized to minimize the influence of the matrix. A limit of detection (LOD) for determination of Cr(VI) in plants by ET AAS was found to be 0.024 μg g−1.The concentration of Cr(VI) and total chromium in plants collected in different geographical areas (South Africa and Russia), grown on soils high in chromium was determined. The concentration of Cr(VI) and total Cr in stems and leaves of plants was in the range of 0.04–0.7 μg g−1 and 0.5–10 μg g−1, respectively. The limited uptake of Cr(III) by plants, in comparison to its concentration in soil, can be explained by the very low solubility of natural Cr(III) compounds.Results for the determination of Cr(VI) were confirmed by the analysis of BCR CRM 545 (Cr(VI) in welding dust) with good agreement between certified (39.5 ± 1.3 μg mg−1) and found (38.8 ± 1.2 μg mg−1) values. The total concentration of Cr in plants has also been determined by ET AAS after dry ashing of samples at 650 °C. Results were confirmed by the analysis of BCR CRM 281 (Trace elements in Rye Grass) with good agreement between the found (2.12 ± 0.16 μg g−1) and certified value (2.14 ± 0.12 μg g−1).  相似文献   

14.
15.
The electrochemical performance of La0.4Sr0.6Co0.8Fe0.2O3−δ (LSCF) cathodes with different nano/microstructures is compared using the area specific resistance (ASR). Cathodes are prepared using two chemical routes, including a novel method to obtain nanosized LSCF oxide. The results clearly point that the intermediate temperature solid oxide fuel cells (IT-SOFC) cathode performance strongly depends on microstructure and that ASR can vary more than two orders of magnitude for identical composition and different morphologies, reaching values as low as 0.05 Ω cm2 at 600 °C and 0.4 Ω cm2 at 450 °C using the novel chemical route, which are even lower than the best known cathodes for IT-SOFC.  相似文献   

16.
The forming of surface species during the adsorption of carbon monoxide (CO) and CO/O2 on a CeO2/Co3O4 catalyst was investigated by in situ Fourier transform infrared (FT-IR) spectroscopy and temperature programmed desorption-mass spectroscopy (TPD-MS). When CO was adsorbed on the CeO2/Co3O4 catalyst, two types of surface species were distinguishable at room temperature: carbonate and bicarbonate. Surface carbonate was adsorbed on the cerium and cobalt, while the surface bicarbonate absorbed on the CeO2/Co3O4 catalyst at 1611, 1391, 1216 and 830 cm−1. Furthermore, the TPD-MS profiles revealed that the CeO2/Co3O4 catalyst showed a greater amount of CO2 than CO at 373 K. The CO desorption from the CeO2/Co3O4 catalyst with increasing temperature showed that the order of thermal stability was surface bicarbonate < surface carbonate < interface carbonate species. Interestingly, the residual carbonate species could remain on the interface up to 473 K. The results revealed that surface bicarbonate could promote the conversion of CO into CO2 for CO oxidation below 50 K.  相似文献   

17.
The enthalpies of mixing of liquid (Co + Cu + Zr) alloys have been determined using the high-temperature isoperibolic calorimeter. The measurements have been performed along three sections (xCo/xCu = 3/1, 1/1, 1/3) with xZr = 0 to 0.55 at T = 1873 K. Over the investigated composition range, the partial mixing enthalpies of zirconium are negative. The limiting partial enthalpies of mixing of undercooled liquid zirconium in liquid (Co + Cu) alloys are (−138 ± 18) kJ · mol−1 (the section xCo/xCu = 3/1), (−155 ± 10) kJ · mol−1 (the section xCo/xCu = 1/1), and (−130 ± 22) kJ · mol−1 (the section xCo/xCu = 1/3). The integral mixing enthalpies are sign-changing. The isenthalpic curves have been plotted on the Gibbs triangle. The main features of the composition dependence of the integral mixing enthalpy of liquid ternary alloys are defined by the pair (Co + Zr) and (Cu + Zr) interactions.  相似文献   

18.
A direct borohydride fuel cell with a Pd/Ir catalysed microfibrous carbon cathode and a gold-catalysed microporous carbon cloth anode is reported. The fuel and oxidant were NaBH4 and H2O2, at concentrations within the range of 0.1–2.0 mol dm−3 and 0.05–0.45 mol dm−3, respectively. Different combinations of these reactants were examined at 10, 25 and 42 °C. At constant current density between 0 and 113 mA cm−2, the Pd/Ir coated microfibrous carbon electrode proved more active for the reduction of peroxide ion than a platinised-carbon one. The maximum power density achieved was 78 mW cm−2 at a current density of 71 mA cm−2 and a cell voltage of 1.09 V.  相似文献   

19.
Equilibria of EuO dissolution and dissociation in molten (NaBr + NaI) mixtures of 0.77:0.23 and 0.31:0.69 compositions at T = 973 K were studied by potentiometric titration method using Pt(O2)|ZrO2(Y2O3) indicator electrode. The solubility product indices of EuO are (7.81 ± 0.08) and (8.43 ± 0.16) in the melts of 0.77:0.23 and 0.31:0.69 compositions. The corresponding dissociation constant indices are (4.96 ± 0.04) and (5.54 ± 0.06), respectively (all the parameters are in molality). Non-dissociated EuO is the prevailing form in all the saturated solutions of europium monoxide. The decrease of the iodide ion concentration in the melts results in strengthening of EuO dissociation that is explained by introduction of harder Pearson’s base (Br) in sodium iodide melt. In its turn this increases the fixation degree of Eu2+ in mixed halide complexes. The total solubility of EuO decreases going from NaI melt to the (bromide + iodide) mixtures that is caused by the decrease of ‘physical’ solubility of non-dissociated oxide which occupies hollow spaces of enough large size in the ionic solvents. The quantity of these hollow spaces diminishes at the sequential Br  I substitution.  相似文献   

20.
Excess molar volumes VmE of binary mixtures of 2,2,2-trifluoroethanol with water, or acetone, or methanol, or ethanol, or 1-alcholos, or 1,4-difluorobenzene, or 4-fluorotoluene or α,α,α-trifluorotoluene were measured in a vibrating tube densimeter at temperature 298.15 K and pressure of 101 kPa. The VmE extrema are: 1.540 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1-heptanol); 1.452 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1-hexanol); 1.238 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1-butanol); 0.821 cm3 · mol−1 for (2,2,2-trifluoroethanol + 4-fluorotoluene); 0.817 cm3 · mol−1 for (2,2,2-trifluoroethanol + ethanol); 0.647 cm3 · mol−1 for (2,2,2-trifluoroethanol + methanol); 0.618 cm3 · mol−1 for (2,2,2-trifluoroethanol + acetone); 0.605 cm3 · mol−1 for (2,2,2-trifluoroethanol + α,α,α-trifluorotoluene); 0.485 cm3 · mol−1 for (2,2,2-trifluoroethanol + 1,4-difluorobenzene); and −0.656 cm3 · mol−1 for (2,2,2-trifluoroethanol + water). The limiting excess partial molar volumes are estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号