首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a single electrode supported direct methanol fuel cell (DMFC) is fabricated and tested. The novel architecture combines the elimination of the polymer electrolyte membrane (PEM) and the integration of the anode and cathode into one component. The thin film fabrication involves a sequential deposition of an anode catalyst layer, a cellulose acetate electronic insulating layer and a cathode catalyst layer onto a single carbon fibre paper substrate. The single electrode supported DMFC has a total thickness of 3.88 × 10?2 cm and showed a 104% improvement in volumetric specific power density over a two electrode DMFC configuration under passive conditions at ambient temperature and pressure (1 atm, 25 °C).  相似文献   

2.
直接甲醇燃料电池(DMFC)具有能量密度高、无需充电、液体燃料添加便捷及环境友好等优点,是新一代便携式移动电源研究热点. DMFC规模应用的主要技术挑战是如何进一步提高电池性能、显著降低成本和可靠延长寿命.催化电极作为 DMFC发电核心和成本的集中体现,其电催化活性和贵金属用量直接影响 DMFC的性能和成本,开发高性能、低成本的催化电极对推进 DMFC实用化进程具有重要意义.特别是在被动式 DMFC中,阴极催化电极不仅需要提高电催化活性和大幅降低贵金属用量,而且还面临内部严重的“水淹”和氧传质受限等问题.近年来,随着纳米技术发展,有序纳米结构已逐渐应用于 DMFC催化电极的构筑中,电池性能得到显著提高.然而,目前的研究主要集中在膜电极纳米有序微孔层、纳米有序改性膜和纳米有序阳极催化电极及其阳极贵金属载量降低等方面,关于阴极催化电极在有序纳米结构以及载量降低等方面的研究相对较少.
  本文采用模板法直接在微孔层上电沉积定向生长排列有序、直径可控的铂纳米棒阵列,并作为阴极催化电极应用于被动式 DMFC. X射线衍射和透射电镜结果表明,该铂纳米棒结构稳定,表面含有丰富的纳米晶须结构,有利于催化电极比表面积增加和电催化活性提高.不同催化电极上氧还原的极化曲线表明电极性能依下列次序变化:直径为200 nm铂纳米棒阵列电极>100 nm铂纳米棒阵列电极>商业化铂黑催化电极.电池性能表征表明,长度为1–3μm、直径分别为200和100 nm、载量为1.0 mg/cm2的铂纳米棒阵列作为阴极催化电极的 DMFC最大功率密度分别为17.3和12.0 mW/cm2.通过催化电极电化学活性面积和阻抗测试,分析其性能提高的原因可归结于有序排列的铂纳米棒阵列结构提高了电化学活性面积、增强了氧还原电催化活性并促进了阴极氧的传质.  相似文献   

3.
Here, we report the development of a new membrane electrode assembly (MEA) structure for passive direct borohydride fuel cells (DBFCs). The anode of this type of MEA includes upper and lower parts for the electro-oxidation of borohydride and hydrogen, respectively. In comparison to conventional MEAs, the maximum power of this MEA is increased by 28.1%, and the anode polarization is decreased due to the current contribution of hydrogen electro-oxidation. The hydrogen generated from borohydride hydrolysis can be oxidized inside the cell, and the fuel coulombic efficiency reaches 100%. Therefore, high fuel utilization and cell safety can be obtained by employing this novel MEA in DBFCs.  相似文献   

4.
The high activity of catalysts based of nanodisperse Pt-P system and their tolerance to the poisoning effect of methanol are demonstrated for the working potentials of cathodes in methanol-air fuel cells. The catalysts’ activity in the oxygen reduction reaction in the presence of methanol is nearly hundred times that of catalysts based on mixed metal-chalcogenide systems.  相似文献   

5.
Three methods to block the methanol transport through proton-conducting polymer membranes while maintaining the proton conductivity unchanged have been conducted; 1) selective layer formation on the surface of the membrane, 2) prearation of nanoclay composite membrane providing tortuous pathway of methanol, 3) control and fixation of the proton transport channels. The methanol permeability through the membranes decreased significantly at the expense of the small decrease in the proton conductivity. It is thus concluded that both the structure and the fixation of the proton transport channels are crucial in optimizinging proton conducting membranes for direct methanol fuel cells.  相似文献   

6.
依据单电池测试结果和甲醇传质理论考察了甲醇溶液的浓度对被动式自呼吸直接甲醇燃料电池(DMFC)性能的影响.研究结果表明,电池的法拉第效率和能量转化效率会随着浓度的增大而降低,采用4mol/L的甲醇溶液实现了最大的放电功率13.9mW/cm^2,并能在60mA下稳定放电长达20h.这取决于电池运行过程中电极内部的甲醇传质和甲醇透过的共同作用.  相似文献   

7.
8.
The membranes in direct methanol fuel cells must both conduct protons and serve as a barrier for methanol. Nafion, the most common fuel cell membrane, is an excellent conductor but a poor barrier. Polyvinyl alcohol pervaporation membranes are good methanol barriers but poor conductors. These and most other pervaporation membranes offer no significant advantages over Nafion in methanol fuel cell applications. However, polybenzimidazole membranes have demonstrated characteristics that suggest up to a 15-fold improvement in direct methanol fuel cells. This improvement may be due to an alternate form of proton conduction in which protons travel via a Grotthus or “hopping” mechanism.  相似文献   

9.
The cathode electrode structure of the direct methanol fuel cell (DMFC) was improved by a novel catalyst ink preparation method. Regulation of the solvent polarity in the cathode catalyst ink caused increases in the electrochemical active surface (EAS) for the oxygen reduction reaction (ORR) as well as decreases in the methanol crossover effect. In a two-step preparation, agglomerates consisting of catalyst and Nafion ionomers were decreased in size, and polar groups in the ionomers formed organized networks in the cathode catalyst layer. Despite Pt catalysts in the cathode being only 0.5 mg cm? 2, the maximum power density of the improved membrane electrode assembly (MEA) was 120 mW cm? 2, at 3 M methanol, which was much larger than that of traditional MEA (67 mW cm? 2).  相似文献   

10.
A novel Pt/Au/C catalyst was prepared by depositing the Pt and Au nanoparticles on the carbon support. The synthesized catalysts were characterized by energy-dispersive X-ray (EDX) and transmission electron microscopy (TEM), and electrochemically analyzed for activity towards oxygen-reduction reaction and methanol oxidation reaction. EDX and TEM results reveal that Pt nanoparticles supported on carbon supports were separated by Au nanoparticles. The electrochemical analysis indicate that the novel catalyst showed the enhanced methanol tolerance while maintaining a high catalytic activity for the oxygen-reduction reaction, which could be attributed to the less methanol adsorption on Pt/Au/C catalyst.  相似文献   

11.
本文介绍了用于直接甲醇燃料电池(DMFCs)的质子交换膜(PEMs)的工作原理与性能要求。讨论了影响DMFCs国PEMs的甲醇渗透性能的因素。综述了Nation、改性Nafion膜以及其它新品种膜的研究进展。  相似文献   

12.
This work reports the fabrication of proton exchange membranes (PEM) with stronger resistance to methanol penetration than Nafion®117. A three-component acrylic polymer blend (TCPB) consisting of a copolymer of 4-vinylphenol-methyl methacrylate, poly(butyl methacrylate) (PBMA) and a copolymer of methyl methacrylate-ethyl acrylate is used as the methanol barrier. In order to implant a proton source phase within the membrane as homogeneously as possible, the hydrophilic monomers, 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) dimethylacrylate (PEGDMA), are polymerized only after they have been embedded in the TCPB matrix. The embedded polymerization has resulted in an asymmetric membrane structure, in which the hydrophilic network is sandwiched by two layers of matrixes with high percentages of TCPB. As expected, this asymmetric membrane structure exhibits lower methanol uptake than Nafion®117; and a proton conductivity in the range of 10−3–10−4 S/cm, which is dependent on the concentration of the sulfonic acid content. It is suggested that the two external layers in this asymmetric membrane provide primarily methanol-blocking and supporting proton-conducting properties; while the middle layer supplies protons and conserves water. This unique sandwiched PEM structure from embedded polymerization is confirmed by microstructure characterizations and by physical property measurements.  相似文献   

13.
Trifluoromethanesulfonic acid or triflate acid, chemical formula CF3SO3H, is regarded as one of the strongest acids and resembles Nafion® in structure. Erbium triflate, a lanthanum salt of triflate, is thermally stable. This paper reports data on the formation of membranes by the fixation of erbium triflate salts (ErTfO) into the Nafion structure. Five different loadings of ErTfO were used to fabricate ErTfO/Nafion composite membranes and these were characterized, extensively for possible use in direct alcohol fuel cells. The membranes were characterized using XRD, TGA, FTIR, and for mechanical strength, water uptake, ion exchange capacity, alcohol uptake, swelling, proton conductivity, alcohol permeability and oxygen stability. The ErTfO/Nafion composite membranes reduced alcohol permeability by 77–80%. The proton conductivity of 3% ErTfO/Nafion composite membranes was 38% higher than that of a pure cast Nafion membrane. The oxygen stability of the ErTfO/Nafion composite membranes was higher than pure cast Nafion. However, the mechanical strength of 7% and 9% ErTfO/Nafion was lower than that of pure cast Nafion. The composite membrane was chemically stable and has potential for use in direct alcohol fuel cells.  相似文献   

14.
A prominent methanol-tolerant characteristic of the PtCeOx/C electrocatalyst was found during oxygen reduction reaction process. The carbon-supported platinum modified with cerium oxide (PtCeOx/C) as cathode electrocatalyst for direct methanol fuel cells was prepared via a simple and effective route. The synthesized electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. It was found that the cerium oxide within PtCeOx/C present in an amorphous form on the carbon support surface and the PtCeOx/C possesses almost similar disordered morphological structure and slightly smaller particle size compared with the unmodified Pt/C catalyst.  相似文献   

15.
16.
直接甲醇燃料电池(DMFC)因其燃料能量密度高,工作温度低,低污染排放等优点被认为是用作移动设备电源的最佳选择之一,至今已有美国的Oorja Protonics公司和丹麦的IRD公司等新能源相关企业相继发布了多款用于手机、电脑、通信基站、叉式装卸机或房车的商业产品.然而, DMFC内部的复杂情况造成的多种不同的电压损失仍旧使得其实际电压效率远低于理论值.其中从阳极渗透到阴极的甲醇造成的混合电位导致的电压损失尤为明显.目前,众多研究人员都致力于开发高稳定性、高耐久性、高性能且低成本的催化材料体系,以克服传统Pt催化剂存在的各种问题.除了催化剂本身之外, DMFC的问题还与其中膜电极的微结构和电化学特性息息相关.膜电极是化学能通过电催化氧化还原反应转化为电能的反应场所,通常由阳极扩散层、阳极催化层、质子交换膜、阴极催化层和阴极扩散层依序组合而成.通过对MEA中的各层进行优化,如传质管理和甲醇渗透等问题都能得到有效解决.
  近年来,纳米技术常被用于改进DMFC性能的研究.具备纳米结构的金属-碳/金属氧化物载体类催化材料得到了广泛研究.这些电催化材料在制备方法、结构和组分上都有较大区别.结构方面,许多研究都证明制备纳米级多孔网络结构或者有序阵列结构的催化层有助于提高催化性能和Pt的利用率.组分方面,许多研究人员都开展了引入Pt以外金属成分或金属氧化物来改变Pt催化剂的表面电子状态的研究.引入这些组分导致的配位体效应可以通过弱化Pt与H+, OH-或COads等的相互作用来起到抗催化毒化和提高催化效率的作用.尽管对于DMFC领域的认知逐渐完善,但是仍有许多问题有待解决.因此,本文介绍了目前用于DMFC的纳米结构电催化材料和多孔电极的研究进展.重点介绍了纳米结构催化剂和载体材料的合成及表征.
  通过对比不同催化材料的特性可以发现,在本文涉及到的催化材料中, In0.1SnO2-Pt和(MoO3)0.2SnO2-Pt/C表现出了最高的催化活性,但是它们高效催化甲醇电氧化所需的碱性环境与现在占绝对主流地位的Nafion质子交换膜所必须的酸性环境相冲突,所以其实际应用价值在碱性阴离子交换膜研究取得突破前都难以有效发挥.而另一类表现较好的采用溶致液晶模板法合成的纳米树枝状和纳米星形Pt催化剂则存在制备工艺难以商业规模化的问题.总的来说,采用溶剂热合成法制备的Pt-NRCeO2/GNs和Pt/Ti0.9Sn0.1O2-C等纳米结构金属氧化物、碳材料复合载体和Pt基贵金属催化剂组成的催化材料体系不仅催化性能相对于商业化Pt纳米颗粒有很大提高,而且制备方法易于商业规模化,值得进一步关注.此外,本文还介绍了如内部传质过程的理论建模计算和膜电极中功能结构的制备等优化DMFC中多孔电极内传质过程的方法.通过计算机模拟得到优化DMFC内部传质过程所需的扩散层、催化层的传质特性相关参数,再通过改进MEA制备工艺,有效控制各层的结构参数向模拟的优化值靠拢,能够实现DMFC性能的有效提升.综合模拟、实验研究及工艺研究结果,根据实际需要,设计和制备包含新功能层的MEA的相关研究也更进一步提高了DMFC的性能和实用性.就目前的研究情况而言,如果在性能提升的基础上,使用寿命再取得突破, DMFC一定会有很好的商业应用前景.  相似文献   

17.
Commercial Nafion 115 membranes were successfully modified by in situ acid-catalyzed polymerization of furfuryl alcohol (PFA) within Nafion structures. FT-IR and AFM were used to characterize the chemical and morphological structures of the Nafion–PFA nanocomposite membrane obtained. The methanol permeation experiments showed that the methanol flux through the Nafion–PFA nanocomposite membranes dropped by a factor of 2.2–2.7 when PFA loading was 3.9–8.0 wt.%. Importantly, the proton conductivity of the membranes decreased only slightly at a low PFA loading (<8 wt.%). The nanocomposite membranes with higher selectivity (e.g., proton conductivity/methanol crossover) achieved a much higher DMFC performance at both room temperature and 60 °C.  相似文献   

18.
Palladium-based catalysts, such as PdSx/C and PdSex/C, have been developed as oxygen reduction catalysts for direct methanol fuel cells. Pd/C catalysts containing chalcogens have been synthesized and tested for oxygen reduction and the results have been analyzed based on changes in the palladium phase. Selenium addition to the catalyst promotes the oxygen reduction due to the modification of the palladium surface. However, sulfur reduces the oxygen reduction activity to a great extent as a result of semi-amorphous palladium phase formation. Both PdSx/C and PdSex/C are highly methanol tolerant.  相似文献   

19.
A series of novel fluoropolymer anion exchange membranes based on the copolymer of vinylbenzyl chloride, butyl methacrylate, and hexafluorobutyl methacrylate has been prepared. Fourier transform infrared (FT-IR) spectroscopy and elemental analysis techniques are used to study the chemical structure and chemical composition of the membranes. The water uptake, ion-exchange capacity (IEC), conductivity, methanol permeability, and chemical stability of the membranes are also determined. The membranes exhibit high anionic conductivity in deionized water at 65 °C ranging from 3.86×10(-2) S cm(-1) to 4.36×10(-2) S cm(-1). The methanol permeability coefficients of the membranes are in the range of 4.21-5.80×10(-8) cm(2) s(-1) at 65 °C. The novel membranes also show good chemical and thermal stability. An open-circuit voltage of 0.7 V and a maximum power density of 53.2 mW cm(-2) of alkaline direct methanol fuel cell (ADMFC) with the membrane C, 1 M methanol, 1 M NaOH, and humidified oxygen are achieved at 65 °C. Therefore, these membranes have great potential for applications in fuel cell systems.  相似文献   

20.
Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号