首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A photoassisted anodization process to fabricate arrays of uniform and straight macropores at selected areas of a Si wafer surface was developed. The front- and backside surfaces of n-type Si(100) wafers were coated with a thin Si(3)N(4) layer, and the frontside layer was micro-patterned using photolithography and reactive ion etching to form an array of microscopic openings at selected areas. The inverted pyramid-shape micropits were formed at these openings by anisotropic etching using aqueous KOH solution; these pits act as the initiation sites for the anodization to form macropores. The electrochemical etching was carried out in aqueous HF solution under illumination from the backside of the wafer, on which Au/Cr electric contact was formed following removal of the Si(3)N(4) layer. To improve the uniformity of the formation condition of the macropores at the selected area, holes were area-selectively generated by controlling the illumination condition during the anodization. For this, micropatterns were formed on the Au/Cr layer at the backside surface, which were aligned to those at the frontside surface. The parameters, such as HF concentration, current density, and wafer thickness, i.e., hole diffusion length, were optimized, and the arrays of uniform and high-aspect-ratio macropores were formed at the selected area of the domain at the silicon surface.  相似文献   

2.
In this paper, we present the results of studies on the photoluminescence (PL) of porous silicon (PSi) samples obtained by etching with the assistance of silver metal in different ways. If the Si sample, after being coated with a layer of silver nanoparticles, is electrochemically etched, its PL intensity becomes hundreds of times stronger than the PL intensity when it is chemically etched in the similar conditions. The difference in the PL intensities is explained partly by the anodic oxidation of silicon which occurs during the electrochemical etching process. The most obvious evidence that silicon had been oxidized anodically in the electrochemical etching process is the disappearance of the PSi layer and the appearance of the silicon oxide layer with mosaic structure when the anodization current density is large enough. The anodic oxidation has the effect of PSi surface passivation. Because of that, the PL of obtained PSi becomes stronger and more stable with time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The present work demonstrates that highly ordered porous anodic zirconia (PAZ) arrays with cell diameters ranging from 70 to 120 nm can be grown in fluoride containing glycerol electrolytes. We show that this morphology (in contrast to the typically observed nanotubular layers) can simply be obtained by controlling the water content in the electrolyte during the anodization process. It is proposed that the morphology transition from pores to tubes is based on the rate of preferential etching at the hexagonal cell triple points in the oxide. This finding allows producing void free highly defined nanoporous layers for various applications.  相似文献   

4.
The current study demonstrates how the etching step in anodization process effects on the photocatalytic activity of TiO2 nanotubes. In this regard, the TiO2 nanotubes were made by one-step and two-step anodization process on two different substrates Ti and etched-Ti foils, respectively. The results revealed that two-step anodization process is a beneficial way to prepare highly well-organized structure and regular surface. The two-step anodization by an enhancement in the fluoride ions diffusion led to a decrease in nanotubes' porosity and an increment in the nanotubes’ surface area, a factor of roughness, and the ratio of length to diameter, respectively. As a consequence of the improvement in geometrical properties, the two-step TiO2 nanotubes led to the intensification of photocurrent density (from 0.383 to 0.677 mA cm−2) and photoconversion efficiency (from 0.18% to 0.29%) in comparison with the one-step nanotubes, respectively. Further, a synergetic impact of the photoelectrochemical measurement and photocatalytic process was observed. The degradation efficiencies of 2,4-dichlorophenol by two-step nanotubes increased from 47 to 55% under visible light, and from 58 to72% under UV irradiation, which it was attributed to more light harvesting, more photo-generated electrons, higher separation efficiency and improvement in geometrical properties. Furthermore, the kinetic study showed that the reactions follow first-order kinetics and the reaction rate constants by two-step nanotubes are 1.25 and 1.44 times as great as those of one-step nanotubes under visible and UV irradiation, respectively. Moreover, the reusability tests showed that 2-step TiO2 nanotubes has good stability and is active even up to the Fifth run.  相似文献   

5.
阳极氧化与超临界干燥结合制备多孔硅   总被引:2,自引:0,他引:2  
多孔硅(PS)在室温下发射强可见光,这一发现在国际上引起极大关注,成为材料科学、半导体物理和化学以及信息科学领域研究的热点[1,2].最近三、四年,国内外对PS制备工艺、影响PS发光的因素、PS发光机制、PS应用前景等方面进行了广泛的研究[2],但有一些基本问题仍待解决,如关于PS发光机制尚存在分歧;PS电致发光效率低,离应用差距甚远;高多孔度PS微孔结构不稳定等.PS微孔内溶剂蒸发过程中,由于毛细管张力的存在,造成微孔骨架受力不匀.强的应力使PS骨架脆弱,甚至微孔结构坍缩,从而导致PS结构不稳定.对于高多孔度…  相似文献   

6.
Influence of direct laser writing with femtosecond pulses on electrochemical etching of n-type low conductivity (>1,000 Ωcm) silicon is demonstrated. It has been shown that thermal 1-μm-thick SiO2 layer on silicon surface can be used as a protective layer in the electrochemical etching process. It has been found that laser ablation changes not only the surface morphology and structure of silicon samples but also the character of their anodic etching in aqueous solution of hydrofluoric acid. Formation of microvoids and caverns of irregular shape has been observed at the laser-ablated sites. It is proposed that the change of silicon conductivity from n- to p-type takes place at the laser fabricated regions. Processes of Si anodic oxidation and electrochemical etching are discussed.  相似文献   

7.
通过化学刻蚀和阳极氧化在AA2024铝合金表面制备超疏水表面。当化学刻蚀时间超过3 min时,表面在很宽pH值范围内显示出水静态接触角大于150°。SEM和AFM照片表明化学刻蚀时间决定了试样表面形貌和粗糙度。FTIR用来研究氟硅烷(G502)与AA2024表面的结合。结果说明FAS(氟硅烷)分子与铝合金表面的三氧化二铝发生反应,并在阳极氧化膜层表面展示出优异的结合性能。超疏水表面的耐腐蚀性能通过在质量分数为3.5%的NaCl溶液中进行动电位极化和交流阻抗(EIS)测试。电化学测试结果和等效电路模型显示出超疏水表面显著改善抗腐蚀性能。  相似文献   

8.
Desorption/ionization on porous silicon-mass spectrometry (DIOS-MS) is a novel soft ionization MS technique that does not require any matrix reagent, ideally resulting in fewer obstructive peaks in the lower mass region. In this study, the etching conditions of porous silicon spots as an ionization platform of DIOS-MS were investigated for determining the molecular weight distribution (MWD) of polymers. To evaluate the accuracy of DIOS mass spectra observed using porous silicon spots prepared under various etching conditions, a certified polystyrene (PS) standard sample with an average molecular weight of ca. 2400 was used as a model sample. By optimizing the etching conditions, the MWD of the PS sample could be accurately observed by DIOS-MS using both p-type and n-type porous silicon spots. Especially, in the case of a suitable n-type spot, an accurate peak distribution with very fewer obstructive background peaks could be observed using the minimum laser power, comparable to the conventional matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS).  相似文献   

9.
Silicon is a rather inefficient light emitter due to the indirect band gap electronic structure, requiring a phonon to balance the electron momentum during the interband transition. Fortunately, momentum requirements are relaxed in the 1-5 nm diameter Si crystals as a result of quantum confinement effects, and bright photoluminescence (PL) in the UV-vis range is achieved. Photoluminescent Si nanocrystals along with the C- and SiC-based nanoparticles are considered bioinert and may lead to the development of biocompatible and smaller probes than the well-known metal chalcogenide-based quantum dots. Published Si nanocrystal production procedures typically do not allow for the fine control of the particle size. An accepted way to make the H-terminated Si nanocrystals consists of anodic Si wafer etching with the subsequent breakup of the porous film in an ultrasound bath. Resulting H-termination provides a useful platform for further chemical derivatization and conjugation to biomolecules. However, a rather polydisperse mixture is produced following the ultrasonic treatment, leading to the distributed band gap energies and the extent of surface passivation. From the technological point of view, a homogeneous nanoparticle size mixture is highly desirable. In this study, we offer an efficient way to reduce the H-terminated Si nanocrystal diameter and narrow size distribution through photocatalyzed dissolution in a HF/HNO3 acid mixture. Si particles were produced using the lateral etching of a Si wafer in a HF/EtOH/H2O bath followed by sonication in deaerated methanol. Initial suspensions exhibited broad photoluminescence in the red spectral region. Photoassisted etching was carried out by adding the HF/HNO3 acid mixture to the suspension and exposing it to a 340 nm light. Photoluminescence and absorbance spectra, measured during dissolution, show the gradual particle size decrease as confirmed by the photoluminescence blue shift. The simultaneous narrowing of the photoluminescence spectral bandwidth suggests that the dissolution rate varies with the particle size. We show that the Si nanoparticle dissolution rate depends on the amount of light adsorbed by the particle and accounts for the etching rate variation with the particle size. Significant improvement in the PL quantum yield is observed during the acid treatment, suggesting improvement in the dangling bond passivation.  相似文献   

10.
Many nanoporous Si structures, including those formed by common electrochemical etching procedures, produce a uniformly etched nanoporous surface. If the electrochemical etch rate is slowed down, details of the etch process can be explored and process parameters may be varied to test hypotheses and obtain controlled nanoporous and defect structures. For example, after electrochemical etching of heavily n‐doped (R = 0.05–0.5 Ω·cm) silicon 〈100〉 single crystals at a current density of 10 mA cm?2 in buffer oxide etch (BOE) electrolyte solution, defect craters containing textured nanopores were observed to occur in ring‐shaped patterns. The defect craters apparently originate at the hydrogen/BOE bubble interface, which forms during hydrogen evolution in the reaction. The slower hydrogen evolution due to low current density and high BOE viscosity allows sufficient bubble residence time so that a high defect density appears at the bubble edges where local reaction rates are highest. Current‐carrying Si? OH species are most likely responsible for the widening of the craters. Reducing the defect/doping density in silicon lowers the defect concentration and thereby the density of nanopores. Measurements of photoluminescence lifetime and intensity show a distinct feature when the few nanopores formed at the ring edges are isolated from each other. Overall features observed in the photoluminescence intensity by XPS strongly emphasize the role of surface oxide that influences these properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
宋焱焱  张禹  夏兴华 《化学学报》2004,62(15):1415-1418,FJ03
研究了KOH水溶液中氧化剂甲醛在p-Si和n-Si(100)单晶半导体电极表面的电化学行为及其对硅化学刻蚀表面形貌的影响.实验结果表明,甲醛不仅影响p-和n-型半导体电极在碱性溶液中的阳极氧化峰电流,而且在负电位区能在Si(100)电极上发生还原.在光照条件下,p-Si(100)电极上也观测到了HCHO的电化学还原及光电流倍增效应.甲醛在硅电极表面的电化学还原反应分两步进行,反应终产物为甲醇.此外,HCHO能有效抑制碱性溶液中Si表面“金字塔”型表面粗糙颗粒的形成。  相似文献   

12.
Both n- and p-type SiC of different doping levels were electrochemically etched by HF. The etch rate (up to 1.5 μm/min) and the surface morphology of p-type 6H-SiC were sensitive to the applied voltage and the HF concentration. The electrochemical valence of 6.3 ± 0.5 elementary charge per SiC molecule was determined. At p-n junctions (p-type layer on a n-type 6H-SiC substrate) a selective etching of the p-type epilayer could be achieved. For a planar 6H-4H polytype junction (n-type, both polytypes with equal doping concentrations) the 4H region was selectively etched under UV illumination. Thus polytype junctions could be marked by electrochemical etching. With HCl instead of HF no etching of SiC occurs, but a SiO2 layer (thickness up to 8 μm) is formed by anodic oxidation. Received: 29 October 1998 / Accepted: 27 January 1999  相似文献   

13.
通过可控的化学腐蚀法制备碳化硅量子点,以氢氟酸和硝酸的混合液为腐蚀剂腐蚀自蔓延燃烧合成的原始碳化硅粉体,而后经超声空化作用及高速离心层析裁剪获得水相的碳化硅量子点,研究了制备工艺参数对量子点光致发光强度、发射波长等光谱特性及粒子尺寸的影响,结果表明,腐蚀剂组分及其配比是影响量子点光致发光强度的主要因素,而超声振动时间和...  相似文献   

14.
n-type GaP(111) has been porosified in HCl, H2SO4, HBr, NaBr, and alkaline NaBr in the dark. The pore morphology strongly depends on the electrochemical conditions and on the chemical nature of anions in the electrolyte. Independent of the pH-value of bromide-containing solutions, layers of triangular pores with a defined cross-section were growing under an irregular pore nucleation layer. Optimized conditions led to a regular structure of equally sized triangular pores with a side length of (98 ± 5) nm. The pore walls are determined by (110)-crystal planes of GaP. In other electrolytes such as HCl or H2SO4 it was not possible to form triangular pores during the electrochemical etching process.  相似文献   

15.
Colloidal InP quantum wires are grown by the solution-liquid-solid (SLS) method, and passivated with the traditional quantum dots surfactants 1-hexadecylamine and tri-n-octylphosphine oxide. The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to other experimental results for InP quantum dots and wires, and to the predictions of theory. The photoluminescence behavior of the wires is also investigated. Efforts to enhance photoluminescence efficiencies through photochemical etching in the presence of HF result only in photochemical thinning or photooxidation, without a significant influence on quantum-wire photoluminescence. However, photooxidation produces residual dot and rod domains within the wires, which are luminescent. The results establish that the quantum-wire band gaps are weakly influenced by the nature of the surface passivation and that colloidal quantum wires have intrinsically low photoluminescence efficiencies.  相似文献   

16.
The treatment of CdSe nanocrystals (NCs) in a 3-amino-1-propanol (APOL)/water (v/v = 10:1) mixture at 80 degrees C in the presence of O(2) causes them to undergo a slow chemical etching process, as evidenced by spectroscopic and structural investigations. Instead of the continuous blue shift expected from a gradual decrease in NC dimensions, a bottleneck behavior was observed with distinct plateaus in the peak position of photoluminescence (PL) and corresponding maxima in PL quantum yield (i.e., 34 +/-7%). It is presently argued that such etching behavior is a result of two competitive processes taking place on the surface of these CdSe NCs: (i) oxidation of the exposed Se-sites to acidic SeO(x)() entities, which are readily solubilized in the basic APOL/H(2)O mixture, and (ii) coordination of the underlying Cd-sites with both amines and hydroxyl moieties to temporally impede NC dissolution. This is consistent with the HRTEM results, which suggest that the etched NCs adopt pyramidal morphologies with Cd-terminated facets (i.e., (0001) bases and either {011} or {21} sides) and account for the apparent resistance to etching at the plateau regions.  相似文献   

17.
A new process to locally photoetch n-type InP under electroless conditions is described. It is based on the use of a polyoxometalate, molybdenum heteropolyanion (SiMo12O404−), dissolved in acidic solution, as an oxidizing agent. The etching is confined to where the light is incident to the n-InP surface. The etch rate depends either on the heteropolyanion concentration or on the incident light intensity. The use of SiMo12O404− associated with light also makes it possible to perform dopant-type selective etching because either in the dark or under illumination p-InP does not undergo a dissolution process. This system should also provide a good means for n-InP defect revealing.  相似文献   

18.
In the present work, we introduce a technique to achieve rapid growth of self-ordered anodic nanotubes with a well-defined tube-to-tube spacing (spaced tubes) and single-wall morphology. By optimizing the anodization conditions (electrolyte, temperature, etc.), the growth rate of spaced tubes can be ≈ 25 times faster than in conventional approaches while maintaining a tube-to-tube spacing of ≈ 100 nm. We show that the origin of the tube-to-tube spacing is self-ordering of nanotubes on two different scales – the primary large tubes are embedded in a matrix of secondary, very short nanotubes with a small diameter. Preferential etching of the small tubes during anodic growth leaves behind an ordered array of spaced individual tubes with a well-defined tube-to-tube spacing.  相似文献   

19.
阳极氧化法制备二氧化钛纳米管及其荧光性质   总被引:1,自引:0,他引:1  
室温下采用电化学阳极氧化法在NaF、Na2SO4和H2SO4的混合溶液中用化学处理后的纯Ti片表面组装了一层结构高度有序的高密度TiO2纳米管阵列。考察了几种主要的实验参数(阳极氧化电压、温度、电解液浓度)对TiO2纳米管阵列形貌和尺寸的影响,探讨了二次阳极氧化对纳米管形貌的改善。对TiO2纳米管阵列进行扫描电子显微镜(SEM)和荧光(PL)分析,探讨其生长机理。结果表明,孔径随阳极氧化电压的升高而变大,温度、电解液浓度影响反应过程中电流密度的大小;二次阳极氧化得到的纳米管的有序性有所改善,孔径大小更为均一,并且发现TiO2纳米管的荧光具有量子效应。  相似文献   

20.
In this Personal Account, we briefly address our journey in developing photoluminescent nanomaterials for sensing purposes, with a focus on gold nanodots (Au NDs). Their synthetic strategies, optical properties, and sensing applications are emphasized. The Au NDs can be simply prepared from the etching of small‐sized Au nanoparticles (<3 nm in diameter) by thiol compounds such as 11‐mercaptoundecanoic acid under alkaline conditions. This simple approach allows the preparation of various functional Au NDs by choosing different thiol compounds as etching agents. Since the optical properties of Au NDs are highly dependent on the core and shell of each Au ND, the selection of etching reagents is important. Over the years we have developed various sensing systems using Au NDs for the detection of metal ions, anions, and proteins, based on analyte‐induced photoluminescence quenching/enhancement of Au NDs as a result of changes in their oxidation state, shell composition, and structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号