首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
Novel ternary palladium based alloy catalysts, PdFeIr/C, for oxygen reduction reaction (ORR) have been successfully prepared via an organic colloid method with ethylene glycol as solvent and sodium citrate as complexing agent. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). Electrochemical activity of the catalysts for ORR was evaluated by steady state polarization measurements, which were carried out on an ultra thin layer rotating disk electrode (RDE). Compared to pure Pd/C and Pd3Fe/C, results showed that the ORR activity of PdFeIr/C was highest, and its methanol tolerance was better than Pt/C catalyst.  相似文献   

2.
《Comptes Rendus Chimie》2015,18(11):1229-1241
This paper summarizes the main results obtained by the Fuel Combustion Group in three applications: (1) carbon-based catalysts for the selective catalytic reduction (SCR) process of NOx, (2) Pt and Pt–Ru catalysts for direct alcohol fuel cells, (3) carbon-supported catalysts for the electroreduction of CO2. Concerning the first aspect, low-cost catalysts able to work at lower temperatures have been prepared and compared with commercial catalysts; for the second one, new catalysts for methanol and ethanol electrochemical oxidation exhibiting current densities that are double those of the commercial ones have been developed; as regards the third one, carbon-supported catalysts for the electroreduction of CO2 based on Fe and Pd were synthesized and tested. Formic acid was obtained as the main product on all Fe/C electrodes.  相似文献   

3.
Electronic states of CeO2, Ce1????em>x Pt x O2????em>δ , and Ce1????em>x????em>y Ti y Pt x O2????em>δ electrodes have been investigated by X-ray photoelectron spectroscopy as a function of applied potential for oxygen evolution and formic acid and methanol oxidation. Ionically dispersed platinum in Ce1????em>x Pt x O2????em>δ and Ce1????em>x????em>y Ti y Pt x O2????em>δ is active toward these reactions compared with CeO2 alone. Higher electrocatalytic activity of Pt2+ ions in CeO2 and Ce1????em>x Ti x O2 compared with the same amount of Pt0 in Pt/C is attributed to Pt2+ ion interaction with CeO2 and Ce1????em>x Ti x O2 to activate the lattice oxygen of the support oxide. Utilization of this activated lattice oxygen has been demonstrated in terms of high oxygen evolution in acid medium with these catalysts. Further, ionic platinum in CeO2 and Ce1????em>x Ti x O2 does not suffer from CO poisoning effect unlike Pt0 in Pt/C due to participation of activated lattice oxygen which oxidizes the intermediate CO to CO2. Hence, higher activity is observed toward formic acid and methanol oxidation compared with same amount of Pt metal in Pt/C.  相似文献   

4.
5.
The structural and electrocatalytic properties of Pt/C and Pt-Ni/C catalysts prepared by the electrochemical dispersion of metals under the action of pulse alternating current in a solution of NaOH were studied. Using X-ray diffraction analysis and scanning and transmission electron microscopy, it was found that the synthesized Pt/C catalysts contained active constituent particles with the average size D 111 = 10.6 nm with a predominantly cubic shape. Upon the dispersion of a Pt3Ni alloy, the Pt-Ni/C catalyst containing the particles of a stoichiometric metal phase of Pt3Ni (D 111 = 9.6 nm) and also Pt x Ni particles (x > 3) enriched in platinum (D 111 = 8.1 nm). The synthesized catalysts possessed high electrocatalytic activity and stability in the reaction of methanol oxidation. The characteristics of these catalysts as anodes in the membrane-electronic unit of a hydrogen-air solid-polymer fuel cell were studied.  相似文献   

6.
Alloy catalysts of Pt50Au50/CexC with various Ce additions (x) were prepared for the oxygen reduction reaction (ORR). The characterization of the alloy structures, surface species, and electro-catalytic activities of prepared alloy catalysts were performed by XRD, temperature-programmed reduction (TPR), and rotating disc electrode (RDE) technique, respectively. The ORR activity of Pt50Au50/C alloy catalyst with a promotion of 15% CeO2 was enhanced significantly in comparison to the commercial Pt/C catalyst within the mixed kinetic-diffusion control region. The addition of CeO2 decreased the particle sizes, increased the dispersion and enhanced the surface segregation of Pt which resulting in an alloy surface with a moderate oxophilicity on alloy catalysts.  相似文献   

7.
《Comptes Rendus Chimie》2015,18(10):1143-1151
Two series of carbon-supported Pd–Au catalysts were prepared by the reverse “water-in-oil, W/O” method, characterized by various techniques and investigated in the reaction of tetrachloromethane with hydrogen at 423 K. The synthesized nanoparticles were reasonably monodispersed having an average diameter of 4–6 nm (Pd/C and Pd–Au/C) and 9 nm (Au/C). Monometallic palladium catalysts quickly deactivated during the hydrodehalogenation of CCl4. Palladium–gold catalysts with molar ratio Pd:Au = 90:10 and 85:15 were stable and much more active than the monometallic palladium and Au-richer Pd–Au catalysts. The selectivity toward chlorine-free hydrocarbons (especially for C2+ hydrocarbons) was increased upon introducing small amounts of gold to palladium. Simultaneously, for the most active Pd–Au catalysts, the selectivity for undesired dimers C2HxCly, which are considered as coke precursors, was much lower than for monometallic Pd catalysts. Reasons for synergistic effects are discussed. During CCl4 hydrodechlorination the Pd/C and Pd–Au/C catalysts were subjected to bulk carbiding.  相似文献   

8.
A facile, one-step reduction route was developed to synthesize Pd-rich carbon-supported Pd–Pt alloy electrocatalysts of different Pd/Pt atomic ratios. As-prepared Pd–Pt/C catalysts exhibit a single phase fcc structure and an expansion lattice parameter. Comparison of the oxygen reduction reaction (ORR) on the Pd–Pt/C alloy catalysts indicates that the Pd3Pt1/C bimetallic catalyst exhibits the highest ORR activity among all the Pd–Pt alloy catalysts and shows a comparative ORR activity with the commercial Pt/C catalyst. Moreover, all the Pd–Pt alloy catalysts exhibited much higher methanol tolerance during the ORR than the commercial Pt/C catalyst. High methanol tolerance of the Pd–Pt alloy catalysts could be attributed to the weak adsorption of methanol induced by the composition effect, to the presence of Pd atoms and to the formation of Pd-based alloys.  相似文献   

9.
Two series of La-based perovskites oxides (La1–xSrxMO3–y with M=Fe or Co) have been used as methane total oxidation catalysts. The best catalytic performances, in isothermal, high temperature conditions (900 °C), in the presence of water and carbon dioxide, were obtained for both series when 20 % of lanthanum cations are replaced by strontium. The catalytic behavior of the two series of catalysts is quite similar, although the cobalt-containing samples are easily reducible by H2 or CH4, whereas the iron-containing ones are not reduced in the same conditions. It is proposed, to explain this apparent inconsistency, that the active sites reoxidation process occurs directly from the molecular oxygen of the gas phase, without participation of the bulk oxygen species mobility.  相似文献   

10.
Carbon-supported Pt/MoOx catalysts for use in PEFC anodes were prepared and their catalytic activity for the oxidation of CO-contaminated H2 was examined based on the fuel cell performance in PEFC single cell arrangements. Based on the XRD pattern and XPS measurements of the prepared Pt/MoOx/C catalysts, it was found that the deposited MoOx exists as an amorphous oxide phase. The MoOx phase shows a redox peak at around 0.45 V, which was revealed by the cyclic voltammogram of the Pt/MoOx/C in sulfuric acid solution. The PEFC performance of the cell with Pt/MoOx/C was improved under 100 ppm CO-contaminated H2 conditions compared to the Pt/C catalyst, and was almost comparable to the PtRu(1:1)/C catalyst.  相似文献   

11.
We report simple synthesis of ternary Pt–Au–Cu catalysts consisting of active Pt-rich shell and Pt transition-metal alloy core for use as highly active and durable electrocatalysts in oxygen reduction reactions. The ternary Pt–Au–Cu catalysts were synthesized by chemical coreduction followed by thermal treatment and chemical dealloying. During synthesis, thermal treatment formed metal particles into high-degree alloys, and chemical dealloying led to selective dissolution of soluble Cu species from the outer surface layer of the thermally treated alloy particles, resulting in Pt-based alloys@Pt-rich surface core–shell configuration. Compared with a commercial Pt/C catalyst, our Pt1?xAu x Cu3/C-AT catalysts exhibited approximately 2.4-fold enhanced performance in oxygen reduction reactions. Among the catalysts employed in this work, Pt0.97Au0.3Cu3/C-AT showed the highest performance in terms of mass activity, specific activity, and electrochemically active surface area loss with negligible change during 10,000 potential cycles. The synthesis details, electrochemical characteristics, oxygen reduction reaction performance, and durability of the chemically dealloyed ternary Pt–Au–Cu catalysts are presented and discussed.  相似文献   

12.
FexC–C hybrid material as a support for Pt anode catalyst in direct formic acid fuel cell was investigated for the first time. The resultant Pt/FexC–C catalysts were prepared by using a simple reduction reaction to load Pt on FexC–C hybrid material, which was synthesized through the carbonization of sucrose and Fe(NO3)3. It was found that the Pt/FexC–C catalysts exhibited excellent catalytic activity for formic acid electrooxidation. The great improvement in the catalytic performance is attributed to the fact that FexC–C hybrid material ameliorated the tolerance to CO adsorption of Pt and facilitated the uniform dispersion of Pt.  相似文献   

13.
The influence of hydrogen-containing molybdenum and tungsten bronzes on the catalytic activity of palladium composite catalysts for the oxidation of H2, CO, and CH4 was studied. It was found that the composite catalysts containing H x MO3 phases (M = W or Mo), which were formed by the reduction of MoO3 and WO3 oxides with hydrogen in the presence of deposited Pd, showed higher catalytic activity in the oxidation of small molecules (H2, CO, and CH4) with excess oxygen than the traditional Pd/Al2O3 deposited catalyst with the same content of the deposited metal. It was shown that the thermal stability of the H x MO3 phases was the limiting factor influencing the activity of these composite catalysts.  相似文献   

14.
(n)MnOx–(1?n)CeO2 binary oxides have been studied for the sorptive NO removal and subsequent reduction of NOx sorbed to N2 at low temperatures (≤150 °C). The solid solution with a fluorite-type structure was found to be effective for oxidative NO adsorption, which yielded nitrate (NO? 3) and/or nitrite (NO? 2) species on the surface depending on temperature, O2 concentration in the gas feed, and composition of the binary oxide (n). A surface reaction model was derived on the basis of XPS, TPD, and DRIFTS analyses. Redox of Mn accompanied by simultaneous oxygen equilibration between the surface and the gas phase promoted the oxidative NO adsorption. The reactivity of the adsorbed NOx toward H2 was examined for MnOx–CeO2 impregnated with Pd, which is known as a nonselective catalyst toward NO–H2 reaction in the presence of excess oxygen. The Pd/MnOx–CeO2 catalyst after saturated by the NO uptake could be regenerated by micropulse injections of H2 at 150 °C. Evidence was presented to show that the role of Pd is to generate reactive hydrogen atoms, which spillover onto the MnOx–CeO2 surface and reduce nitrite/nitrate adsorbing thereon. Because of the lower reducibility of nitrate and the competitive H2–O2 combustion, H2–NO reaction was suppressed to a certain extent in the presence of O2. Nevertheless, Pd/MnOx–CeO2 attained 65% NO-conversion in a steady stream of 0.08% NO, 2% H2, and 6% O2 in He at as low as 150 °C, compared to ca. 30% conversion for Pd/γ–Al2O3 at the same temperature. The combination of NOx-sorbing materials and H2-activation catalysts is expected to pave the way to development of novel NOx-sorbing catalysts for selective deNOx at very low temperatures.  相似文献   

15.
The new compounds La1?xMxMnO3 (0.05 ? x ? 0.4 for M = K; x = 0.2 for M = Na, Rb) have been prepared. La1?xKxMnO3 (0.05 ? x ? 0.4), LaMnO3.01, LaMnO3.15, La0.8Na0.2MnO3, and La0.8Rb0.2MnO3 have been used as catalysts in the reduction of NO. La0.8K0.2MnO3 has also been used in the catalytic decomposition of NO. The activity of these catalysts is related to the presence of a Mn3+/Mn4+ mixed valence and to the relative ease of forming oxygen vacancies in the solid. The presence of cation vacancies in LaMnO3.15 and the substitution of La3+ by alkali ions in LaMnO3 increases the catalytic activity. The reduction of NO involves both molecular and dissociative adsorption of NO.  相似文献   

16.
Selective catalytic reduction of NO x with hydrocarbons (HC-SCR) has received much attention as one of potential technologies for reducing NO x emissions under lean-burn conditions. Pt/ZSM-5 prepared by sublimation method and Pt/V/MCM-41 catalysts have been introduced for the wider activity temperature window than those Pt catalysts reported previously. The influence of pre-treatment, oxygen concentration, water and SO2 on the activities of Pt-based catalysts has been discussed. Combinatorial catalysis, which has been developed recently for discovering the practical HC-SCR catalysts quickly, has been introduced too. Finally, the reaction mechanism of HC-SCR over Pt-based catalysts has been briefly discussed.  相似文献   

17.
Production of methanol from anthropogenic carbon dioxide (CO2) is a promising chemical process that can alleviate both the environmental burden and the dependence on fossil fuels. In catalytic CO2 hydrogenation to methanol, reduction of CO2 to intermediate species is generally considered to be a crucial step. It is of great significance to design and develop advanced heterogeneous catalysts and to engineer the surface structures to promote CO2-to-methanol conversion. We herein report an oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles (Pt/HxMoO3−y) which affords high methanol yield with a methanol formation rate of 1.53 mmol g-cat−1 h−1 in liquid-phase CO2 hydrogenation under relatively mild reaction conditions (total 4.0 MPa, 200 °C), outperforming other oxide-supported Pt catalysts in terms of both the yield and selectivity for methanol. Experiments and comprehensive analyses including in situ X-ray absorption fine structure (XAFS), in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and density functional theory (DFT) calculations reveal that both abundant surface oxygen vacancies (VO) and the redox ability of Mo species in quasi-stable HxMoO3−y confer the catalyst with enhanced adsorption and activation capability to subsequently transform CO2 to methanol. Moreover, the Pt NPs act as H2 dissociation sites to regenerate oxygen vacancies and as hydrogenation sites for the CO intermediate to finally afford methanol. Based on the experimental and computational studies, an oxygen-vacancy-mediated “reverse Mars–van Krevelen (M–vK)” mechanism is proposed. This study affords a new strategy for the design and development of an efficient heterogeneous catalyst for CO2 conversion.

Oxygen-defective molybdenum sub-oxide coupled with Pt nanoparticles affords high methanol yield in liquid-phase CO2 hydrogenation via reverse Mars–van Krevelen mechanism.  相似文献   

18.
Palladium catalysts based on Siralox and AS aluminosilicate supports for the deep oxidation of methane were studied. With the use of XRD analysis, it was found that they were heterophase systems consisting of an amorphous aluminosilicate and γ-Al2O3 stabilized against agglomeration. It was found that the catalytic activity of palladium-aluminosilicate catalysts in the deep oxidation of methane at 500°C depended on the support precalcination temperature. X-ray photoelectron spectroscopy (XPS) was used to study the states of the AS-30 aluminosilicate support calcined at 600, 800, or 1000°C and palladium supported on it. It was found that the action of an acid impregnation solution of palladium nitrate on the aluminosilicate calcined at 800°C resulted in a structural rearrangement of the aluminosilicate surface. This rearrangement resulted in the stabilization of both palladium oxide and palladium metal particles at surface defects and the incorporation of these particles into the aluminosilicate after catalyst calcination. As a result, an anomalous decrease in catalytic activity was observed in aluminosilicate samples calcined at 800°C. According to XPS data, palladium in the catalyst was stabilized in the following three phases: metal (E b(Pd 3d 5/2) = 334.8 eV), oxide (E b(Pd 3d 5/2) = 336.8 eV), and “interaction” (E b(Pd 3d 5/2) = 335.8 eV) phases. The ratio between these phases depended on support and catalyst calcination temperatures. The interaction phase, which consisted of PdOx clusters stabilized in the aluminosilicate structure, was responsible for the retention of activity after calcination at high temperatures (800°C). Based on an analysis of XPS data, it was hypothesized that palladium in the interaction phase occurred in a charged state with the formal charge on the Pd atom close to 1 + (δ+ phase).  相似文献   

19.
Based on a mechanistic study of the selective reduction of NO x by propane on NTK-10-1 and Ni-Cr oxide (NCO) catalysts, the reason for synergism in this process on a mechanical mixture of the catalysts was determined. On the NCO catalyst at temperatures higher than 250°C without NO x activation, C3H8 was oxidized with the formation of a considerable amount of hydrogen. This hydrogen migrated to the surface of NTK-10-1 through a gas phase and reduced this surface. On the reduced surface, H2 reacted with NO x by a mechanism characteristic of supported platinum group metals. In accordance with this mechanism, nitrogen atoms, which were formed by the dissociation of NO on metal atoms reduced by hydrogen, recombined to form nitrogen molecules in a gas phase, whereas oxygen atoms reacted with the hydrocarbon to form CO2 and H2O molecules in a gas phase. The positive effect of H2, which was formed on the NCO surface, on the reduction of NO x on NTK-10-1 is the main reason for synergism. An analysis of the experimental data demonstrated that an effectively working mechanical mixture of catalysts can be obtained if one of the mixture components is responsible for the effective activation of nitrogen oxides and the other is responsible for the activation of hydrocarbons.  相似文献   

20.
《Journal of Energy Chemistry》2017,26(6):1168-1173
Developing non-precious metal catalyst with high activity, good stability and low cost for electrocatalytic oxygen reduction reaction(ORR) is critical for the wide application of energy conversion system. Here, we developed a cost–effective synthetic strategy via silica assistance to obtain a novel Fe_3C/Fe–N_x–C(named as COPBP-PB-Fe-900-SiO_2) catalyst with effective active sites of Fe–N_xand Fe_3C from the rational design two-dimensional covalent organic polymer(COPBP-PB). The nitrogen-rich COP effectively promotes the formation of active Fe–N_x sites. Additionally, the silica not only can effectively suppress the formation of large Fe-based particles in the catalysts, but also increases the degree of carbonization of the catalyst.The as-prepared COPBP-PB-Fe-900-SiO_2 catalyst exhibits high electrocatalytic activity for ORR with a halfwave potential of 0.85 V vs. reversible hydrogen electrode(RHE), showing comparable activity as compared with the commercial Pt/C catalysts in alkaline media. Moreover, this catalyst also shows a high stability with a nearly constant onset potential and half-wave potential after 10,000 cycles. The present work is highly meaningful for developing ORR electrocatalysts toward wide applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号