共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhuang QuanChao Xu JinMei Fan XiaoYong Wei GuoZhen Dong QuanFeng Jiang YanXia Huang Ling Sun Shigang 《中国科学B辑(英文版)》2007,50(6):776-783
The storage behavior and the first delithiation of LiCoO2 electrode in 1 mol/L LiPF6-EC:DMC:DEC electrolyte were investigated by electrochemical impedance spectroscopy (EIS). It has found that, along with the
increase of storage time, the thickness of SEI film increases, and some organic carbonate lithium compounds are formed due
to spontaneous reactions occurring between the LiCoO2 electrode and the electrolyte. When electrode potential is changed from 3.8 to 3.95 V, the reversible breakdown of the resistive
SEI film occurs, which is attributed to the reversible dissolution of the SEI film component. With the increase of electrode
potential, the thickness of SEI film increases rapidly above 4.2 V, due to overcharge reactions. The inductive loop observed
in impedance spectra of the LiCoO2 electrode in Li/LiCoO2 cells is attributed to the formation of a Li1−x
CoO2/LiCoO2 concentration cell. Moreover, it has been demonstrated that the lithium-ion insertion-deinsertion in LiCoO2 hosts can be well described by both Langmuir and Frumkin insertion isotherms, and the symmetry factor of charge transfer
has been evaluated at 0.5.
Supported by the Special Funds for Major State Basic Research Project of China (Grant No. 2002CB211804) 相似文献
2.
ZHUANG Quan-chao FAN Xiao-yong XU Jin-mei WEI Guo-zhen DONG Quan-feng SUN Shi-gang 《高等学校化学研究》2008,24(4):511-515
The formation process of solid electrolyte interphase(SEI) film on spinel LiMn2O4 electrode surface was studied by electrochemical impedance spectroscopy(EIS) during the initial storage in 1 mol/L LiPF6-EC:DMC:DEC electrolyte and in the subsequent first charge-discharge cycle. It has been demonstrated that the SEI film thickness increased with the increase of storage time and spontaneous reactions occurring between spinel LiMn2O4 electrode and electrolyte can be prevented by the SEI film. In the first charge-discharge cycle succeeding the storage, the electrolyte oxidation coupled with Li-ion insertion is evidenced as the main origin to increase the resistance of SEI film. The results also confirm that the variations of the charge transfer resistance(Rot) with the electrode potential(E) can be well described using a classical equation. 相似文献
3.
Lithium-ion batteries are commonly used for electrical energy storage in portable devices and are promising systems for large-scale energy storage. However, their application is still limited due to electrode degradation and stability issues. To enhance the fundamental understanding of electrode degradation, we report on the Raman spectroscopic characterization of LiCoO2 cathode materials of working Li-ion batteries. To facilitate the spectroscopic analysis of the solid electrolyte interface (SEI), we apply in situ surface-enhanced Raman spectroscopy under battery working conditions by using Au nanoparticles coated with a thin SiO2 layer (Au@SiO2). We observe a surface-enhanced Raman signal of Li2CO3 at 1090 cm−1 during electrochemical cycling as an intermediate. Its formation/decomposition highlights the role of Li2CO3 as a component of the SEI on LiCoO2 composite cathodes. Our results demonstrate the potential of Raman spectroscopy to monitor electrode/electrolyte interfaces of lithium-ion batteries under working conditions thus allowing relations between electrochemical performance and structural changes to be established. 相似文献
4.
锂离子电池有机电解液材料研究进展 总被引:4,自引:0,他引:4
综述了锂离子电池有机电解液材料的研究现状。锂离子电池有机电解液主要由电解质锂盐、有机溶剂和添加剂三个部分组成,新型电解质锂盐的研究开发可分为三个方面:(1)LiTFSI及其类似物;(2)络合硼酸锂化合物;(3)络合磷酸锂化合物。有机溶剂的研究工作主要集中在新型有机溶剂的开发上。最重要的添加剂主要有三类:(1)主要用以改善碳负极SEI膜性能的添加剂;(2)过充电保护添加剂;(3)配体添加剂。 相似文献
5.
Although various transition metal oxides have been reported to act as low potential Li insertion hosts, the oxyhydroxides have remained unexplored to date. We show here that the hydroxide ions present in transition metal oxyhydroxides do not interfere with the lithium uptake and extraction, permitting very good reversibility of the reduction/oxidation reactions. Goethite (α-FeOOH) nanocrystals can uptake and extract large amount of Li via the conversion reaction mechanism, providing a reversible capacity of 500 mA h g−1 at an average potential of 0.85 V vs. Li/Li+. The mechanism was examined using a combination of X-ray diffraction, electron microscopy, and the corresponding selected area electron diffractions (SAEDs). The α-FeOOH is reduced into nanoparticles of metallic Fe0 embedded in an amorphous matrix of Li2O and LiOH in the first discharge; the subsequent cyclings are redox reactions between metallic Fe0 and Fe2O3 clusters. 相似文献
6.
目前研究较多的锂离子电池正极材料主要有LiCoO2、LiNiO2和LiMn2O4犤1犦,虽然LiCoO2的成本相对较高,但LiCoO2具有最为优良的电化学性能,如高且平稳的充放电平台、高比容量以及良好的循环性能犤2犦,是目前应用最广泛的商品化电极材料。LiCoO2材料主要采用高温固相法犤3~5犦制备,该方法工艺简单,容易实现大规模生产,但缺点是需要较高的焙烧温度和较长的焙烧时间,且反应原料混合均匀程度有限,易导致非化学计量、非均相以及不规则的颗粒形貌等,因此材料的比容量、循环寿命等电化学性能以及反应的可控性还不甚理想。研究表明犤6犦电极材… 相似文献
7.
PVDF-HFP composite polymer electrolyte with excellent electrochemical properties for Li-ion batteries 总被引:2,自引:0,他引:2
Hui Xie Zhiyuan Tang Zhongyan Li Yanbing He Yong Liu Hong Wang 《Journal of Solid State Electrochemistry》2008,12(11):1497-1502
Poly (vinylidene fluoride-co-hexafluoropropylene)-based composite polymer electrolyte (CPE) was prepared by phase inversion
technique. In this work, we first applied a novel surface-modified sub-micro-sized alumina, PC-401, as ceramic filler. Various
electrochemical methods were applied to investigate the electrochemical properties of the polymer electrolytes. We found that
the CPE with 10 wt.% PC-401 has excellent electrochemical properties, including the ionic conductivity as high as 0.89 mS
cm−1 and the Li-ion transference number of 0.46. Polymer Li-ion batteries using LiFePO4 as cathode active material exhibited excellent cycling and high-temperature performances. PC-401 shows a promising applicability
in the preparation of polymer electrolyte with high electrochemical properties. 相似文献
8.
《Progress in Solid State Chemistry》2014,42(4):175-183
Reactions and charge transfer at cathode/electrolyte interfaces affect the performance and the stability of Li-ion cells. Corrosion of active electrode material and decomposition of electrolyte are intimately coupled to charge transfer reactions at the electrode/electrolyte interfaces, which in turn depend on energy barriers for electrons and ions. Principally, energy barriers arise from energy level alignment at the interface and space charge layers near the interface, caused by changes of inner electric (Galvani) potential due to interfacial dipoles and concentration profiles of electronic and ionic charge carriers.In this contribution, we introduce our surface science oriented approach using photoemission (XPS, UPS) to investigate cathode/electrolyte interfaces in Li-ion batteries. After an overview of the processes at cathode/electrolyte interfaces as well as currently employed analysis methods, we present the fundamentals of contact potential formation and energy level alignment (electrons and ions) at interfaces and their analysis with photoemission. Subsequently, we demonstrate how interface analysis can be employed in Li-ion battery research, yielding new and valuable insights, and discuss future benefits. 相似文献
9.
摘要 运用EIS研究了LiCoO2正极在1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中0~30℃范围内阻抗谱特征、SEI膜阻抗、电子电阻和电荷传递电阻等随温度的变化。结果表明,LiCoO2正极的EIS谱特征与温度有关,随温度的升高其低频区域在1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中分别于10和20℃出现反映锂离子固态扩散的斜线。LiCoO2正极在 1M LiPF6-EC:DEC:DMC和1M LiPF6-PC:DMC+5%VC电解液中,锂离子迁移通过SEI膜的离子跳跃能垒平均值分别为37.74和26.55KJ/mol;电子电导率的热激活化能平均值分别为39.08和53.81KJ/mol;嵌入反应活化能平均值分别为68.97和73.73KJ/mol。 相似文献
10.
The objective of this work was to describe the characteristics of chemically and electrochemically deposited Pd surface layers on HOPG and polycrystalline gold electrode, using in situ ECSTM and EIS measurements, and SEM-EDX element analysis. Pd surface layers were deposited, in successive voltammetric cycles, and anodically dissolved in 0.01 M HCl+0.01 M (NH4)2PdCl4 aqueous electrolyte. Both of the electrode materials used in the study were treated as standard testing electrodes: (i) HOPG for STM/ECSTM measurements, and (ii) polycrystalline Au as the well known working electrode in various electro-analytical applications. The elements surface analysis and nano-surface pictures were used to interpret the EIS diagrams and electrical equivalent circuits. Pd chemical and electrochemical deposition on the HOPG surface was compared with the same process on the polycrystalline gold electrode, on which palladium can be electrodeposited only by means of electrochemical cathodic deposition. Surface topographies of the electrodeposited palladium layers on HOPG and Au were completely different. The equivalent electrical circuits were fitted and the surface roughness of the investigated electrodes calculated. Relations between the surface topography, EIS and SEM-EDX, and interface model of the electrolyte solution electrodeposited Pd layer matrix electrode were proposed. 相似文献
11.
《中国化学快报》2020,31(6):1670-1673
Herein,we first report one-step synthesis of uniform Mo2 C microflowers(MCMFs) from low-cost precursors via industrialized solid-state strategy.With fine optimization in precursor ratio and pyrolysis temperatures,the as-fabricated MCMFs are assembled well with interconnected single-crystalline nanosheet subunits.More encouragingly,the resultant MCMFs are further highlighted as a competitive anode with robust and long-duration lithium-storage behaviors towards high-performance Li-ion batteries 相似文献
12.
Bouafsoun A Helali S Mebarek S Zeiller C Prigent AF Othmane A Kerkeni A Jaffrézic-Renault N Ponsonnet L 《Bioelectrochemistry (Amsterdam, Netherlands)》2007,70(2):401-407
The electrochemical impedance spectroscopy (EIS) technique has been shown to be an effective tool for monitoring endothelial cell behaviour on a multilayer functionalised gold electrode. Polystyrene, a reproducible model substrate, is deposited as a thin layer on a thiol functionalised gold electrode. Fibronectin, a protein promoting endothelial cell adhesion, is then adsorbed on the polystyrene surface. The different steps of this multilayer assembly are characterized by Faradaic impedance. The charge transfer resistance and the capacitance for the total layer are modified at each step according to the electrical properties of each layer. This gives the endothelial cells' electrical state in terms of its resistive and capacitive properties. In this study, the endothelial cell layer presents a specific charge transfer resistance equal to 1.55 kOmega cm(2) with no large defects in the cell layer, and a specific capacitance equal to few microF cm(-2) explained by the existence of pseudopods. These electrical properties are correlated to the endothelial cell viability, adhesion and cytoskeleton organization. 相似文献
13.
Christopher M. Burba K.M. Shaju Peter G. Bruce Roger Frech 《Vibrational Spectroscopy》2009,51(2):81-250
Nano-engineered electrodes, such as porous LiCoO2, exhibit improved electrochemical performance compared to the non-porous LiCoO2 analogue. Structural studies of the pore walls composing the nanostructured LiCoO2 materials have focused on long-range (diffraction) methods. However, the powder diffraction patterns of the low-temperature (LT) and high-temperature (HT) phases of non-porous LiCoO2 are very similar and distinguishing the two phases can be challenging. In this work, infrared and Raman spectroscopy are used to unambiguously assign the LiCoO2 crystalline domains present in two porous compounds (nanowire LiCoO2 and mesoporous LiCoO2) as LT-LiCoO2. Moreover, the appearance of new bands in the infrared spectrum of LiCoO2 nanowires might signal the presence of disordered LiCoO2 domains that are XRD silent. 相似文献
14.
Constructing a reliable and favorable electrode-electrolyte interface is crucial to utilize the exceptional energy storage capability in commercial lithium-ion batteries. Here, we report a facile synthesis approach for the lithium difluorophosphate (LiPO2F2) solution as an effective film-forming additive via direct adding the Li2CO3 into LiPF6 solution at 45 ℃. Benefiting from the significantly reduced interface resistance (RSEI) and charge transfer impedance (Rct) of both the cathode and anode by adding the prepared LiPO2F2 solution into a baseline electrolyte, the cycling performance of the graphite||LiNi0.5Mn0.3Co0.2O2 pouch cell is remarkably improved under all-climate condition. 相似文献
15.
《中国化学快报》2020,31(12):3209-3212
Constructing a reliable and favorable electrode-electrolyte interface is crucial to utilize the exceptional energy storage capability in commercial lithium-ion batteries. Here, we report a facile synthesis approach for the lithium difluorophosphate (LiPO2F2) solution as an effective film-forming additive via direct adding the Li2CO3 into LiPF6 solution at 45 °C. Benefiting from the significantly reduced interface resistance (RSEI) and charge transfer impedance (Rct) of both the cathode and anode by adding the prepared LiPO2F2 solution into a baseline electrolyte, the cycling performance of the graphite||LiNi0.5Mn0.3Co0.2O2 pouch cell is remarkably improved under all-climate condition. 相似文献
16.
P. Velsquez H. Gmez D. Leinen J. R. Ramos-Barrado 《Colloids and surfaces. A, Physicochemical and engineering aspects》1998,140(1-3):177-182
A chalcopyrite CuFeS2 electrode obtained from the “El Teniente” mine has been studied by Electrochemical Impedance Spectroscopy (EIS) in an alkaline solution for different oxidation potentials. The experimental results can be interpreted from a Randles equivalent circuit, Vdc<0.4 V vs. saturated calomel electrode (SCE), and a surface layer model for Vdc>0.4 V vs. SCE. From these results, the variation with the d.c. applied potentials of charge transfer electrical resistance of the redox reaction, the double layer capacitance and other characteristic parameters are considered. 相似文献
17.
丁磺酸内酯对锂离子电池性能及负极界面的影响 总被引:5,自引:0,他引:5
用循环伏安(CV)、电化学阻抗谱(EIS)、扫描电镜(SEM)、能谱分析(EDS)及理论计算等方法研究了添加剂丁磺酸内酯(BS)对锂离子电池负极界面性质的影响. 研究表明, 在初次循环过程中, BS具有较低的最低空轨道能量, 优先于溶剂在石墨电极上还原分解, 并形成固体电解质相界面膜(SEI膜). 在含BS的电解液中形成的SEI膜的热稳定性高, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小基本保持不变, 而在不含BS的电解液中形成的SEI膜的热稳定性较差, 在70 ℃下储存24 h后, 膜电阻和电荷迁移电阻大小有明显的增加. 从BS对锂离子电池电化学性能影响的研究表明, 加入少量的BS能够显著提高锂离子电池的室温放电容量、低温及高温储存放电性能. 相似文献
18.
Yanyi Liu Jiangang Li Qifeng Zhang Nan Zhou Evan Uchaker Guozhong Cao 《Electrochemistry communications》2011,13(11):1276-1279
Porous nanostructured V2O5 films were prepared by electrodeposition from V2O5 sol with the addition of block copolymer Pluoronic P123, and they can be readily applied as Li-ion battery cathode without adding any polymer binder or conductive additives. SEM images showed an ideal morphology for Li+ intercalation favored charge transfer kinetics, which is a combination of homogeneously distributed nano-pores and V2O5 nanoparticles. Electrochemical measurements revealed that, the porous nanostructured V2O5 films have a high discharge capacity of 160 mAh/g at 9 A/g, and maintain 240 mAh/g after 40 cycles at 300 mA/g. The excellent Li+ intercalation property could be ascribed to the high surface area, sufficient contact between electrode materials and electrolyte, short Li+ diffusion path, as well as the good accommodation for volume change which are benefited from homogeneously distributed nano-pores and V2O5 nanoparticles. 相似文献
19.
锂离子电池的广泛应用对储能器件的能量密度、安全性和充放电速度提出了新的要求. 全固态锂电池与传统锂离子电池相比具有更少的副反应和更高的安全性,已成为下一代储能器件的首选. 构建匹配的电极/电解质界面是在全固态锂电池中获得优异综合性能的关键. 本文采用第一性原理计算研究了固态电池中电解质表面及正极/电解质界面的局域结构和锂离子输运性质. 选取β-Li3PS4 (010)/LiCoO2 (104)和 Li4GeS4 (010)/LiCoO2 (104)体系计算了界面处的成键情况及锂离子的迁移势垒. 部分脱锂态的正极/电解质界面上由于Co-S成键的加强削弱了P/Ge-S键的强度,降低了对Li+的束缚,从而导致了更低的锂离子迁移势垒. 理解界面局域结构及其对Li+输运性质的影响将有助于我们在固态电池中构建性能优异的电极/电解质界面. 相似文献
20.
Electrochemical impedance spectroscopy has been widely used to understand the chemistry and physics of battery systems. This review covers electrochemical impedance spectroscopy used for the interpretation of impedance data of lithium-ion batteries (LIBs) from advanced equivalent circuit models to the mathematical model, which is developed by John Newman. In addition, as a method to realize an energy-sustainable society using diagnostics based on the combination of LIBs and electrochemical impedance spectroscopy, on-board diagnostics of battery packs are achieved based on an input signal generated by a power controller in a battery management system instead of the conventionally used frequency response analyzer. The diagnostic system is applicable to energy management systems which are installed in homes, buildings, and communities, accumulating the impedance data on state of health of LIBs. Finally, a future possibility regarding the diagnostics of battery packs coupled with the machine learning of impedance data is introduced. 相似文献