首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chiral Schiff base complexes containing azo-groups, bis(N-R-1-cyclohexylethyl-4-phenyldiazenylsalicydenaminato) nickel(II), copper(II) and zinc(II) complexes, and without azo-groups, bis(N-R-1-cyclohexylethyl-3,5-dichlorosalicydenaminato) nickel(II), copper(II) and zinc(II) complexes, affording a distorted square planar trans-[MN2O2] coordination geometry were prepared. Organic/inorganic hybrid materials in polymethylmethacrylate (PMMA) spincoat films of the complexes (both the azobenzene (AZ) containing type and the latter complexes of the AZ separated type) were assembled for a comparison of polarized UV light induced molecular arrangement caused by the Weigert effect. Investigation of the parameters for the optical anisotropy of the metal complexes as well as AZ suggested that the degree of increasing optical anisotropy of the containing type was higher than that of the separated type based on π-π (of which a characteristic band appeared around 380 nm) and n-π bands of polarized absorption electronic spectra. In the AZ containing type, the rigid nickel(II) or zinc(II) complexes easily increase the optical anisotropy compared to the flexible copper(II) complexes. In the AZ separated type, interestingly, enhancement of some CD bands suggests the role of chiral dopants of some complexes without azo-groups for AZ.  相似文献   

2.
Two new cadmium(II)–terephthalate complexes, 1{[Cd2(μ-terephthalate)2(L1)2]·9H2O} (1) and [{Cd(H2O)(L2)}2(μ-terephthalate)](terephthalate) · 10H2O (2), where L1 = (E)-N1,N1-diethyl-N2-(1-(pyridin-2-yl)ethylidene)ethane-1,2-diamine; L2 = N,N′-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine; have been synthesized by a conventional solution method. Characterization by single crystal X-ray crystallography shows that compound 1 is composed of 1-D polymeric zig-zag chains with distorted pentagonal-bipyramidal cadmium centers. Compound 2 consists of centrosymmetric dinuclear complexes with a distorted pentagonal-bipyramidal cadmium center in which one terephthalate ligand bridges the metal centres and another terephthalate anion with water of crystallization forms a H-bonding network.  相似文献   

3.
Copper(II) complexes of three chiral enantiomeric pairs of o‐hydroxy Schiff bases derived from (R)‐(+)‐1‐phenylethylamine and (S)‐(‐)‐1‐phenylethylamine, were prepared and characterized. Elemental analyses, specific rotation, i.r., electronic, cd and mass spectra,and some X‐ray crystal structures were obtained. The X‐ray study of four complexes shows that the geometry around the metal atom is distorted square planar. Epr studies of all these complexes in DMF solution at 77 K suggest that their geometries in solution are slightly different to that observed in the solid state by X‐ray crystallography. Although, cd spectra only show charge transfer absorptions, the data confirm the enantiomeric character of the three pairs of the obtained complexes.  相似文献   

4.
Chiral Schiff base complexes containing azo-groups, bis(N-R-1-naphtylethyl-4-phenyldiazenylsalicydenaminato) nickel(II), copper(II), and zinc(II) complexes affording a distorted square planar trans-[MN2O2] coordination geometry were prepared newly. Organic/inorganic hybrid materials in polymethylmethacrylate (PMMA) cast films of them (a containing type) or the analogous chiral Schiff base complexes, bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato) nickel(II), copper(II), and zinc(II), and azobenzene (AZ) (a separated type) were assembled for comparison of polarized UV light induced molecular arrangement caused by Weigert effect. Investigation of parameters for optical anisotropy of metal complexes as well as AZ suggested that the degree of increasing optical anisotropy of the containing type is higher than that of the separated type based on π-π (of which characteristic band appeared around 380 nm), n, and d-d bands of polarized absorption electronic spectra. Rigid nickel(II) or zinc(II) complexes are easy to increase optical anisotropy than flexible copper(II) complexes for both types.  相似文献   

5.
Compounds [Cu(L1)2] (1) and [Cu(L2)2] (2), where L1 and L2 are Schiff base ligands of 4-aminoantipyrine and substituted salicylaldehydes, were synthesized and characterized using various spectroscopic techniques such as elemental analysis, UV–Vis, IR, and NMR. The single crystal X-ray structures for L1, L2, and their corresponding Cu(II) complexes assembled in a 1:2 metal to ligand ratio were analyzed for their various weak H-bonding and dimeric association. The structural analysis of compounds 1 and 2, being the first crystal structures in this series, deserves special attention to help further the understanding in this area of structure–reactivity correlation studies. Further these compounds, composed of very similar chemical composition with a small difference in the substituent on the salicylaldehyde moiety, influenced through various weak inter- and intramolecular H-bonding and C–H?π interactions, rearrange the geometry around Cu(II) from a tetrahedrally distorted square planar geometry in [Cu(L1)2] (1) to square planar in [Cu(L2)2] (2). Steric strain imposed by the methyl substitution on the 4-aminoantipyrine moiety of the Schiff base ligand, causing this small change of the Cu(II) geometry, along with various weak interactions is analyzed in detail.  相似文献   

6.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

7.
S‐allyl‐β‐N‐(benzylidene)dithiocarbazate (sabdtc, 1 ), prepared from hydrazine hydrate, carbon disulfide, allyl bromide and benzaldehyde, reacts with copper(II) nitrate in ethanol solution to form the complex Cu(sabdtc)2 ( 2 ). 1 function as a single negatively charged bidentate chelating ligand and coordinates via the azomethine nitrogen atom and thioenolate sulfur atom to the metal ion. 1 and 2 were characterized by elemental analyses, 1H NMR, 13C NMR, UV/Vis, IR, and mass spectra. Spectroscopic evidences suggest a four‐coordinate distorted square planar structure for 2 . The molecular and crystal structure of 2 was determined by single crystal X‐ray analysis. Crystallographic data for 2 at 291(2) K: space group C2/c, a = 20.340(3), b = 15.503(3), c = 7.659(1) Å, β = 95.96(2)°, Z = 4, R1 = 0.044 and wR2 = 0.0689.  相似文献   

8.
Two new mononuclear copper(II) complexes ([CuL1]·CHCl3 (1) and [CuL2] (2)) have been prepared by the reaction of two ONNO type Schiff base ligands, ([bis(2-hydroxy-propiophenone)2,2′-dimethylpropan-diamine] (H2L1) and [bis(5-bromosalicylaldehyde)2,2′-dimethyl-propandiamine] (H2L2)) with Cu(OAc)2·H2O in 1:1 molar ratios. The complexes have been characterized by elemental analyses, IR and UV-Vis spectroscopy. The structures have been confirmed by X-ray single crystal analysis at 100 K. The Cu(II) atom in 1 is coordinated equatorially by a N2O2 donor set of the tetradentate, dinegative Schiff-base (L1)2− in a distorted square planar arrangement. While in [CuL2] (2), the Cu(II) ion possesses an additional weak intermolecular contact with one bromine atom of the ligand, thus the coordination sphere of 2 can be described as strongly distorted square pyramidal. The catalytic performance of the prepared copper complexes for the oxidation of styrene and cyclooctene with tert-butyl hydroperoxide has been evaluated.  相似文献   

9.
We have systematically investigated the structural features, electronic properties, thermally-induced structural phase transitions and absorption spectra depending on the solvent for ten Cu(II) complexes with 3,5-halogen-substituted Schiff base ligands. Structural characterization of two new complexes, bis(N-R-1-phenylethyl- and N-R,S-2-butyl-5-bromosalicydenaminato-κ2N,O)copper(II), reveals that they afford a compressed tetrahedral trans-[CuN2O2] coordination geometry with trans-N–Cu–N = 159.4(2)° and trans-O–Cu–O = 151.7(3)° for the 1-phenylethyl complex and trans-N–Cu–N = 157.9(3)° and trans-O–Cu–O = 151.0(3)° for the 2-butyl one. All the complexes exhibit a structural phase transition by heating in the solid state regardless of their structures at room temperature. The absorption spectra of a series of ten complexes exhibit a slight shift of the d–d band at 16 000–20 000 cm−1 and remarkable shift of the π–π* band at 24 000–28 000 cm−1, which suggests that the dipole moment of the solvents presumably affects the conformation of the π-conjugated moieties of the ligands rather than the coordination environment. We have also attempted ‘photochromic solute-induced solvatochromism’ by a system of bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato-κ2N,O)copper(II) and photochromic 4-hydroxyazobenzene in chloroform solution. We successfully observed a change of the d–d and π–π* bands of the complex in the absorption spectra caused by cistrans photoisomerization of 4-hydroxyazobenzene.  相似文献   

10.
Three new centrosymmetric dinuclear copper(II) complexes, [Cu2Cl2(L1)2] (1), [Cu2(μ 1,3-NCS)2(L2)2] (2), and [Cu2(μ 1,1-N3)2(L3)2] (3), where L1, L2, and L3 are the deprotonated forms of the Schiff bases 1-[(2-propylaminoethylimino)methyl]naphthalen-2-ol (HL1), 1-[(3-methylaminopropylimino)methyl]naphthalen-2-ol (HL2), and 2-[(2-isopropylaminoethylimino)methyl]phenol (HL3), respectively, have been prepared and characterized by elemental analysis, IR spectra, and single-crystal X-ray crystallography. Each Cu is coordinated by the three donors of the Schiff bases and by two bridging groups, forming a square-pyramidal geometry.  相似文献   

11.
A chiral Schiff base complex, bis(N-R-1-phenylethyl-3,5-dichlorosalicydenaminato) cobalt(II) was prepared newly and characterized to be a distorted tetrahedral trans-[CoN2O2] coordination geometry. Organic/inorganic hybrid materials containing the related cobalt(II), nickel(II), copper(II), and zinc(II) complexes and photochromic azobenzene in polymethylmethacrylate (PMMA) cast films were assembled for comparison of their flexibility and molecular arrangement in the photofunctional medium. Characterization of each component and hybrid materials was carried out by means of absorption and CD spectra and thermal analysis (TG–DTA and DSC). Moreover, we have attempted to observe changes of conformation and/or molecular arrangement of the complexes or azobenzene induced by cistrans photoisomerization of azobenzene after alternate irradiation of polarized UV and visible light. Gradual increase of optical anisotropy was observed for all the hybrid materials regardless of flexibility of Schiff base complexes, and the degree of dichroism and weak intermolecular interactions were discussed based on polarized absorption electronic spectra.  相似文献   

12.
A new hydrazonic Schiff base ligand, 2-pyridinecarbaldehyde-(2′-aminosulfonylbenzoyl)hydrazone (HL), has been prepared and characterized, and its coordinative properties were studied. [ML2] complexes, M = Co, Ni, Cu, Zn or Cd have been synthesised by electrochemical oxidation of the anodic metal in a cell containing an acetonitrile solution of the ligand. The compounds obtained have been characterized by microanalysis, IR, NMR and UV–Vis spectroscopy, mass spectrometry and also by X-ray diffraction. The structural studies show that the metal is in a distorted octahedral environment with the monoanionic ligand acting as a meridional tridentate (N,N,O) chelate system.  相似文献   

13.
Preparations, crystal structures, electronic and CD spectra are reported for new chiral Schiff base complexes, bis(N-R-1-naphthylethyl-3,5-dichlorosalicydenaminato)nickel(II), copper(II), and zinc(II). Nickel(II) and copper(II) complexes adopt a square planar trans-[MN2O2] coordination geometry with Δ(R,R) configuration. While zinc(II) complex adopts a compressed tetrahedral trans-[MN2O2] one with Δ(R,R) configuration and exhibits an emission band around 21 000 cm−1 (λex = 27 000 cm−1). Absorption and CD spectra were recorded in N,N′-dimethylformamide, acetone, methanol, chloroform, and toluene solutions to discuss relationships between spectral shifts of d–d and π–π bands by structural changes of the complexes and physical properties of the solvents. Moreover, we have attempted to investigate conformational changes of the complexes induced by photoisomerization of azobenzene, 4-hydroxyazobenzene, or 4-aminoazobenzene, in various solutions under different conditions. Weak intermolecular interactions between complexes and azobenzenes are important for the phenomenon by conformational changes of bulky π-conjugated moieties of the ligands.  相似文献   

14.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Copper(II) and cobalt(II) complexes of salicylaldimine obtained by the condensation of N,N-diethyl-2-methyl-1,4-phenylenediamine with 3,5-di-tert-butyl-2-hydroxybenzaldehyde have been synthesized and characterized by elemental analyses, magnetic susceptibility measurements, cyclic voltammetry, and FT-IR and UV–Vis spectroscopy. The molecular structure of the title copper(II) complex was determined by the single crystal X-ray diffraction technique. The Cu(II) center is coordinated by four atoms of the donor set in a compressed tetrahedral trans-[N2O2] environment, which can be essentially ascribed to the presence of bulky fragments of the ligand. The computed bond valences of the copper verify +2 oxidation state and indicate that the copper bonds, in particular Cu–N bonds, are elongated due to steric effects from bulky substituents in the ligands, N-(4-diethylamino-2-methylphenyl). Intermolecular C–H···π interactions leading to centrosymmetric synthons serve to stabilize periodic organization of the molecules.  相似文献   

16.
Ruthenium(II) chiral Schiff base complexes 1–10 and their precursor ligands derived from -amino acids viz. -leucine, -histidine with salicylaldehyde, 3-tertiary-butyl-, 3,5-di-tertiary-butyl-, 3,5 dichloro- and 3,5-dinitrosalicylaldehyde are reported. The characterization of the ligands and complexes was accomplished by various appropriate physico-chemical studies, namely, microanalysis, IR-, UV/Vis-, 1H, 31P{1H} NMR, CD spectroscopy, optical rotation, conductance measurement and cyclic voltammetry. The complexes thus synthesised were used as catalysts for enantioselective epoxidation of 1,2-dihydronaphthalene. The effect on enantioselectivity and chemical conversions to epoxide were studied in different solvents viz. acetonitrile, dichloromethane and fluorobenzene along with change of the substituents on ligands and different terminal oxidants. The less polar nature of solvent as well as the donating group attached on the catalysts favours enantioselectivity, while PhIO was the oxidant of choice. The enantiomeric excess of the resulting epoxide was evaluated by chiral cyclodex BDA capillary column.  相似文献   

17.
We have reported herein the synthesis of three new Cu(II) complexes of tri- and tetradentate Schiff base ligands containing N3 or N4 donor set along with terminal NNN or SCN ligands: [L1Cu(NCS)]ClO4 (1), [L2Cu(NCS)2] (2) and [L3Cu(NNN)]ClO4 (3) [L1 = NC5H4C(CH3)=N(CH2)3N=C(CH3)C5H4N, L2= Me2N–(CH2)3–N=C(CH3)C5H4N and L3 = NC5H4CH=N–(CH2)4–N=CHC5H4N]. The complexes have been systematically characterised by elemental, spectroscopic and electrochemical techniques. Antimicrobial activities of the Schiff base ligands and their metal complexes have been studied using the disc diffusion method on the strains of Candida tropicalis and Bacillus megaterium. Structures of all the complexes have been unequivocally established from single crystal X-ray diffraction analyses that show the monomeric units containing a five-coordinated copper center in highly distorted square pyramidal geometry with thiocyanate or azide anion coordinated as terminal ligand. The complexes 1 and 3 crystallise in monoclinic (P21/c) and 2 in triclinic (P-1) space group, respectively.  相似文献   

18.
Three copper(II) complexes derived from bulky ortho-hydroxy Schiff base ligands, (1)-(3), were synthesized and characterized by chemical analysis, UV-Vis, IR, μeff and mass spectrometry. The solid state structures of compounds (1)-(3) were determined. The solid state X-ray diffraction studies of these compounds show that the geometry is intermediate between square planar and tetrahedral. Moreover, EPR studies in DMF solution at 77 K suggest that the geometry of these complexes in solution is different from that observed in the solid state by X-ray crystallography. Furthermore, cyclic voltammetry studies performed for (1)-(3), indicate a dependence of the cathodic potentials upon conformational and electronic effects.  相似文献   

19.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

20.
[Cu(L)] (1) and mixed ligand copper(II) complexes [Cu(L)(A)] (2 and 3), where L is the Schiff base derived from o-vanillin and l-tryptophan and A is pyridine (2) and imidazole (3), were synthesized and characterized using conventional and spectral techniques. 2 was structurally characterized using single crystal X-ray crystallography showing that Cu(II) is coordinated through N2O2 donors in a square plane. The EPR spectra of the complexes in frozen solution support a square-based structure. Electrochemical behavior of the complexes has been studied by cyclic voltammetry. The DNA-binding properties of L and 1–3 with calf thymus DNA were investigated by spectral and kinetic methods. For all the complexes, the maximum value of binding constant (0.38 × 106) was achieved with 3 by spectroscopic titration. The ability of compounds to break pUC19 DNA was checked by gel electrophoresis. The ligand and copper complexes exert cytotoxicity against MCF-7 cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号