共查询到20条相似文献,搜索用时 15 毫秒
1.
The import of thiamine pyrophosphate (TPP) through both mitochondrial membranes was studied using a total of 3-µs molecular dynamics simulations. Regarding the translocation through the mitochondrial outer membrane, our simulations support the conjecture that TPP uses the voltage-dependent anion channel, the major pore of this membrane, for its passage to the intermembrane space, as its transport presents significant analogies with that used by other metabolites previously studied, in particular with ATP. As far as passing through the mitochondrial inner membrane is concerned, our simulations show that the specific carrier of TPP has a single binding site that becomes accessible, through an alternating access mechanism. The preference of this transporter for TPP can be rationalized mainly by three residues located in the binding site that differ from those identified in the ATP/ADP carrier, the most studied member of the mitochondrial carrier family. The simulated transport mechanism of TPP highlights the essential role, at the energetic level, of the contributions coming from the formation and breakage of two networks of salt bridges, one on the side of the matrix and the other on the side of the intermembrane space, as well as the interactions, mainly of an ionic nature, formed by TPP upon its binding. The energy contribution provided by the cytosolic network establishes a lower barrier than that of the matrix network, which can be explained by the lower interaction energy of TPP on the matrix side or possibly a uniport activity. 相似文献
2.
We have synthesized naphthopyranone epoxide 4 from D-isoascorbic acid together with its three diastereoisomers. DNA alkylation of ODNs containing 5'XGT3' and 5'TGY3' by 4 (11R, 13R), where X and Y are any nucleotide bases, occurred at all G residues except at G of the 5'TGC3' sequence. In contrast, the three other diastereoisomers of 4 showed only weak G alkylation activity. Differential (1)H NMR NOE of the 4-G adduct confirmed the G-N7 alkylation at the epoxide carbon of 4 with concomitant S(N)2 ring opening of the epoxide. Quantitative HPLC analysis of G alkylation efficiency for 4 showed the order of G alkylation susceptibility as TGGT approximately CGT > TGA > AGT > TGT > TGC. The order was fully consistent with those reported for aflatoxin B(1) oxide and kapurimycin A(3), suggesting that the sequence selectivity observed for these DNA alkylating agents is not structure dependent but most likely due to the intrinsic property of DNA sequences. We found that the order of G alkylation susceptibility obtained for 4 completely matched the calculated HOMO energy level of G-containing sequences. These results underscore that 4 is a unique molecular probe for ranking the HOMO level of G-containing sequences by well-known G alkylation chemistry and suggests that the intercalation of charge neutral intercalators is a HOMO-controlled process. 相似文献
3.
The binding of pyrene-1-carboxaldehyde (1-PyCHO) with ctDNA was investigated through absorption, intrinsic and induced circular dichroism, viscosity measurements and steady-state fluorescence. The binding and the number of monomer units of the polymer involved in the binding of one dye molecule (site size) have been quantified. The results indicated that the 1-PyCHO molecule binds to the ctDNA in an intercalative mode. The spectroscopic evidence of this intercalation process is also corroborated by the effect of urea, iodide-induced fluorescence quenching of pyrene-1-carboxaldehyde and competitive binding using a fluorescent intercalator, SYBR Green I (SG). The induced circular dichroism (ICD) spectra of pyrene-1-carboxaldehyde complexed with ctDNA show that pyrene-1-carboxaldehyde intercalates into ctDNA and that the intercalation orientation of pyrene to the DNA base-pairs long axis is heterogeneous. On the other hand, the intrinsic circular dichroism (CD) spectra show a stabilization of the right-handed B form of ctDNA, due to the intercalation process. 相似文献
4.
DNA nanoconstructs are obtained in solution by using six unique 42-mer DNA oligonucleotides, whose sequences have been designed to form a pseudohexagonal structure. The required flexibility is provided by the insertion of two non-base-paired thymines in the middle of each sequence that work as flexible hinges and constitute the corners of the nanostructure when formed. We show that hexagonally shaped nanostructures of about 7 nm diameter and their corresponding linear open constructs are formed by self-assembly of the specifically designed linear oligonucleotides. The structural and dynamical characterization of the nanostructure is obtained in situ for the first time by using dynamic light scattering (DLS), a noninvasive method that provides a fast dynamic and structural analysis and allows the characterization of the different synthetic DNA nanoconstructs in solution. A validation of the LS results is obtained through Monte Carlo (MC) simulations and atomic force microscopy (AFM). In particular, a mesoscale molecular model for DNA, developed by Knotts et al., is exploited to perform MC simulations and to obtain information about the conformations as well as the conformational flexibilities of these nanostructures, while AFM provides a very detailed particle analysis that yields an estimation of the particle size and size distribution. The structural features obtained by MC and AFM are in good agreement with DLS, showing that DLS is a fast and reliable tool for characterization of DNA nanostructures in solution. 相似文献
5.
The density functional calculations with aug-cc-pVDZ basis sets on cationic guanine-cytosine (GC(+)) and adenine-thymine (AT(+)) base pairs suggest that the cationic charge is almost entirely localized on the G and A units with significant changes in the N-H and N...O distances around the H-bonded area. While the calculated intramolecular reorganization energy (lambda(v)) for a GC base pair (0.75 eV) is remarkably larger than that for an isolated G base (0.49 eV), for the AT base pairs these values (0.44 and 0.40 eV) are almost the same. The gas phase activation energies (E(a)) for GC(+)GC-->GCGC(+), AT(+)AT-->ATAT(+), and GC(+)AT-->GCAT(+) hole transfer processes are 0.19, 0.11, and 0.73 eV with rate constants of 1.69 x 10(11), 3.15 x 10(11), and 4.61(0.168) s(-1), respectively, at 298 K. An alternative mechanism of hole transfer has been proposed on the basis of energy barriers. 相似文献
6.
We propose an approach that combines an extraction of collective motions of a molecular system with a sampling of its free energy surface. A recently introduced method of metadynamics allows exploration of the free energy surface of a molecular system by means of coarse-grained dynamics with flooding of free energy minima. This free energy surface is defined as a function of a set of collective variables (e.g., interatomic distances, angles, torsions, and others). In this study, essential coordinates determined by essential dynamics (principle component analysis) were used as collective variables in metadynamics. First, dynamics of the model system (explicitly solvated alanine dipeptide, Ace-Ala-Nme) was simulated by a classical molecular dynamics simulation. The trajectory (1 ns) was then analyzed by essential dynamics to obtain essential coordinates. The free energy surface as a function of the first and second essential coordinates was then explored by metadynamics. The resulting free energy surface is in agreement with other studies of this system. We propose that a combination of these two methods (metadynamics and essential dynamics) has great potential in studies of conformational changes in peptides and proteins. 相似文献
7.
Molecules that selectively recognize DNA mismatches (MMs) play a key role as nucleic acids probes and as chemotherapeutic agents. Metallo-insertors bind to the minor groove (mG) of double strand (ds) DNA, expelling the mismatched base pairs and acting as their π-stacking replacement. In contrast, metallo-intercalators bind to the major groove (MG) of ds DNA and π-stack to adjacent base pairs. In this study we focused on structural and energetic properties of Δ-[Rh(bpy)(2)(chrysi)](3+) (1), Δ-[Ru(bpy)(2)(ddpz)](2+) (2), and Δ-[Ru(bpy)(2)(eilatin)](2+) (3) as prototypical examples of metallo-insertors and intercalators. For all molecules we characterized both insertion and intercalation into a DNA dodecamer via force field based molecular dynamics (MD) and hybrid quantum-classical (QM/MM) MD simulations. A structural analysis of the 1-3/DNA noncovalent adducts reveals that the insertion provokes an untwist of the DNA, an opening of the mG and of the phosphate backbone in proximity of the mismatch, while the intercalation induces smaller changes of these structural parameters. This behavior appears to be correlated with the size of the inserting/intercalating ligand in proximity of the metal coordination site. Moreover, our simulations show that the different selectivity of 1 toward distinct MM types may be correlated with the thermodynamic stability of the MMs in the free DNA and with that of the corresponding insertion adduct. Understanding the factors which tune a specific insertion is of crucial importance for designing specific luminescent probes that selectively recognize MMs, as well as for developing more effective anticancer drugs active in MM repair of deficient cells lines. 相似文献
9.
Structural Chemistry - Drug delivery plays a substantial role in a more effective treatment of diseases of the central nervous system; therefore, the selection of an appropriate drug carrier system... 相似文献
10.
The crystal-metal interfacial free energy for a six-site model of succinonitrile [N triple bond C-(CH(2))(2)-C triple bond N] has been calculated using molecular-dynamics simulation from the power spectrum of capillary fluctuations in interface position. The orientationally averaged magnitude of the interfacial free energy is determined to be (7.0+/-0.4)x10(-3) J m(-2). This value is in agreement (within the error bars) with the experimental value [(7.9+/-0.8)x10(-3) J m(-2)] of Marasli et al. [J. Cryst. Growth 247, 613 (2003)], but is about 20% lower than the earlier experimental value [(8.9+/-0.5)x10(-3) J m(-2)] obtained by Schaefer et al. [Philos. Mag. 32, 725 (1975)]. In agreement with the experiment, the calculated anisotropy of the interfacial free energy of this body-centered-cubic material is small. In addition, the Turnbull coefficient from our simulation is also in agreement with the experiment. This work demonstrates that the capillary fluctuation method of Hoyt et al. [Phys. Rev. Lett. 86, 5530 (2001)] can be successfully applied to determine the crystal-melt interfacial free energy of molecular materials. 相似文献
11.
Aurora kinase family is one of the emerging targets in oncology drug discovery and several small molecules targeting aurora
kinases have been discovered and evaluated under early phase I/II trials. Among them, PHA-739358 (compound 1r) is a 3-aminopyrazole
derivative with strong activity against Aurora A under early phase II trial. Inhibitory potency of compound 1r (the benzylic
substituent at the pro-R position) is 30 times over that of compound 1s (the benzylic substituent at the pro-S position).
In present study, the mechanism of how different configurations influence the binding affinity was investigated using molecular
dynamics (MD) simulations, free energy calculations and free energy decomposition analysis. The predicted binding free energies
of these two complexes are consistent with the experimental data. The analysis of the individual energy terms indicates that
although the van der Waals contribution is important for distinguishing the binding affinities of these two inhibitors, the
electrostatic contribution plays a more crucial role in that. Moreover, it is observed that different configurations of the
benzylic substituent could form different binding patterns with protein, thus leading to variant inhibitory potency of compounds
1r and 1s. The combination of different molecular modeling techniques is an efficient way to interpret the chirality effects
of inhibitors and our work gives valuable information for the chiral drug design in the near future. 相似文献
12.
Due to their lethal consequences and a relatively high probability of introduction of repair errors and mutations, single and double strand breaks are among the most important and dangerous DNA lesions. However, the mechanisms of their recognition and repair processes are only poorly known at present. This work defines and analyzes a DNA with single strand break as a template study for future complex analyses of biologically serious double strand break damage and its enzymatic repair mechanisms. Besides a non-damaged DNA serving as a reference system with no surprising results, system with open valences of the atoms at the strand break ends as well as a system with filled valences were simulated. In both cases during the first few nanoseconds the broken ends of strand breaks are significantly exposed to the outside of the molecule. However, with increasing time, the system with single strand break with open valences is partially disrupted. On the contrary, the system with filled valences shows stable conformation with newly created hydrogen bond between the two strand break endings. Moreover, these endings are steadily situated in the inner part of the molecule, thus making the recognition and docking process of a repair enzyme more complicated in the case of filled valences. 相似文献
13.
The present work studies the reaction mechanism of the racemization of mandelate substrate by mandelate racemase enzyme. The reaction has some intriguing aspects such as the deprotonation of a nonacid hydrogen and the achievement of the pseudosymmetry necessary to obtain the racemic mixture. We will make use of a QM/MM potential energy surface to compute the free energy profiles associated with the reaction. The most favorable reaction mechanism consists of two proton transfers and the configuration inversion of the stereogenic carbon taking place in a concerted manner. We have also designed a suitable reaction coordinate to compute the free energy profiles for this rather complicated reaction. In addition, analysis of the electrostatic effects and bond distances along the reaction will explain how the enzyme accomplishes the catalysis. Finally, the enzymatic reaction will be compared to a model of the uncatalyzed reaction and the catalytic effect of mandelate racemase will be evaluated. 相似文献
15.
We review our recent work on the direct calculation of the interfacial free energy, gamma, of the crystal-melt interface via molecular dynamics computer simulation for a number of model systems. The value of gamma as a function of crystal orientation is determined using a thermodynamic integration technique employing moving cleaving walls [Phys. Rev. Lett. 2000, 85, 4751]. The calculation is sufficiently precise to resolve the small anisotropy in gamma, which is crucial in determining the kinetics and morphology of dendritic growth. We report values of gamma for the hard-sphere and Lennard-Jones systems, as well as recent results on the series of inverse-power potentials. For the inverse sixth-, seventh-, and eighth-power systems, we determine gamma for both fcc and bcc crystal structures. For these systems, the bcc-melt gamma is lower than that for fcc crystals by about 25%, consistent with recent experiments and computer simulations on fcc-forming systems that show preferential formation of bcc nuclei in the initial stages of crystallization. In addition, we show that our results give a molecular interpretation of Turnbull's rule, which is the empirical relationship between gamma and the enthalpy of fusion. 相似文献
16.
Free energy is a central measure in statistical mechanics and the means by which other thermodynamic properties of a system may be accessed. Using an efficient numerical method referred to as the Free Energy from Adaptive Reaction Coordinate Forces (FEARCF) method it is shown that multidimensional free energy volumes (FEVs) are computable and that they are critical to the understanding of reactions, conformational analysis and molecular association. Specifically the FEV of the hydrolysis reaction catalysed by a cellobiohydrolase I is shown to reveal molecular details of the reaction mechanism. The reaction is understood from a combination of the two dimensional reaction free energy surface, W(ξ(1), ξ(2)) and the three dimensional glucopyranose ring pucker FEV, W(ξ(1), ξ(2), ξ(3)). These studies provide for the first time details of the evolution of the oxocarbenium ion, which is a key to characterizing transition state structures seen in carbohydrate chemistry. A long-standing challenge has been the unambiguous assignment of the relative orientation of molecular pairs in solution. Here we describe how the molecular association of the benzene dimer in water and their relative orientational attraction are found from four dimensional, FEVs W(ξ(1), ξ(2), ξ(3), ξ(4)). 相似文献
17.
Verapamil is a commonly prescribed cardiovascular drug, but surprisingly its metabolism in the target tissue of pharmacotherapy is basically unknown. We therefore investigated its biotransformation in human heart tissue and correlate the production of metabolites with the gene expression of major drug metabolising enzymes. Using electrospray LC–MS–MS and LC–MS 3 experiments, a total of nine metabolites were observed in incubation experiments with verapamil and microsomes isolated from the human heart tissue, and this included a carbinolamine-, N-formyl-, ahemiacetale-, and formate-intermediate of N-demethyl- and O-demethylverapamil. We also observed a hydroxylation product at the benzylic position of atom C-7 (M9). Metabolites M5–M9 are novel and were not observed in previous studies with liver or other human tissues. A fine example of the considerable metabolic competence of human heart is the formation of M1–M4, e.g. dealkylverapamil, norverapamil and isomers of O-demethylverapamil, which were believed to be exclusively produced by the liver. 相似文献
19.
Phase diagrams for potassium and sodium chlorides are determined by molecular dynamics and free energy calculations. Two rigid-ion interaction models, namely, the Born-Mayer-Huggins (BMH) and Michielsen-Woerlee-Graaf (MWG) effective pair potentials, have been used. The critical and triple point properties are discussed and compared with available experimental and simulation data. The MWG model reproduces the experimental liquid-gas equilibria better than the BMH model, being the accordance very good in the lowest temperature region of the coexistent liquids, particularly for NaCl. However, both models underestimate the critical temperatures of KCl and NaCl. Relatively to the solid-gas equilibria, the models do not reproduce well the experimental data. As for the solid-liquid coexistences either the BMH or the MWG models appear unrealistic. 相似文献
20.
The packing structures of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) thiolates on implicit gold surfaces were studied in explicit aqueous solutions of 1M NaCl using molecular dynamics simulations. The simulations were based on individual DNA chains placed in hexagonal simulation boxes of different sizes, representing various packing densities. The total potential energy per DNA chain was compared. The optimal packing structures were determined based on the minimal potential energy within the limits of the conditions that were evaluated in this study. The optimal packing density of ssDNA was found to be 0.19 DNA chains/nm(2), which is consistent with that determined experimentally. Furthermore, the optimal packing density of dsDNA was shown to be approximately 58% of the packing density for ssDNA, indicating that the packing of ssDNA should be approximately 58% of its optimal packing in order to achieve the best hybridization. 相似文献
|