首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hao X  Xu Y  Lv M  Zhou D  Wu Z  Meng J 《Inorganic chemistry》2008,47(11):4734-4739
First principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2k code, have been used to investigate the electronic and magnetic properties of YBaFe2O5, especially as regards the charge-orbital ordering. Although the total 3d charge disproportion is rather small, an orbital order parameter defined as the difference between t2g orbital occupations of Fe2+ and Fe3+ cations is large (0.73) and gives unambiguous evidence for charge and orbital ordering. Strong hybridization between O2p and Fe e g states results in the nearly complete loss of the separation between the total charges at the Fe2+ and Fe3+ atoms. Furthermore, the relationship between the orbital ordering and charge ordering is also discussed. The dxz orbital ordering is responsible for the stability of the G-type antiferromagnetic spin ordering and the charge ordering pattern.  相似文献   

2.
YBaFe(2)O(5) has been synthesized by heating a nanoscale citrate precursor in a carefully controlled reducing environment. Successful synthesis of a single-phase sample can only be achieved in a narrow window of oxygen partial pressures and temperatures. YBaFe(2)O(5) adopts an oxygen-deficient perovskite-type structure, which contains double layers of corner sharing FeO(5) square pyramids separated by Y(3+) ions. At T(N) congruent with 430 K, tetragonal (P4/mmm) and paramagnetic YBaFe(2)O(5) orders antiferromagnetically (AFM) experiencing a slight orthorhombic distortion (Pmmm). Around this temperature, it can be characterized as a class-III mixed valence (MV) compound, where all iron atoms exist as equivalent MV Fe(2.5+) ions. The magnetic structure is characterized by AFM Fe-O-Fe superexchange coupling within the double layers and a ferromagnetic Fe-Fe direct-exchange coupling between neighboring double layers. Upon cooling below approximately 335 K, a premonitory charge ordering (2Fe(2.5+) --> Fe(2.5+delta) + Fe(2.5)(-delta)) into a class-II MV phase takes place. This transition is detected by differential scanning calorimetry, but powder diffraction techniques fail to detect any volume change or a long-range structural order. At approximately 308 K, a complete charge ordering (2Fe(2.5+) --> Fe(2+) + Fe(3+)) into a class-I MV compound takes place. This charge localization triggers a number of changes in the crystal, magnetic, and electronic structure of YBaFe(2)O(5). The magnetic structure rearranges to a G-type AFM structure, where both the Fe-O-Fe superexchange and the Fe-Fe direct-exchange couplings are antiferromagnetic. The crystal structure rearranges (Pmma) to accommodate alternating chains of Fe(2+) and Fe(3+) running along b and an unexpectedly large cooperative Jahn-Teller distortion about the high-spin Fe(2+) ions. This order of charges does not fulfill the Anderson condition, and it rather corresponds to an ordering of doubly occupied Fe(2+) d(xz) orbitals. Comparisons with YBaMn(2)O(5) and YBaCo(2)O(5) are made to highlight the impact of changing the d-electron count.  相似文献   

3.
The influence of the Mn-O-Mn bond angle on the magnetic and electronic properties of YBaMn(2)O(5) was studied by density functional theory, which was implemented in the CASTEP code. In practical calculation, both G- and A-type antiferromagnetic (AFM) orderings were considered. The calculated results indicated that G-type is more stable than A-type, in agreement with both experiment and previous theoretical study. It is also interesting to note that a transition from G-type to A-type at an Mn-O-Mn angle of ca. 170 degrees was found upon increasing Mn-O-Mn angle. Therefore, the calculation suggested that what is essential to stabilize the G-type AFM state is the reduction of the Mn-O-Mn bond angle. For both magnetic orderings, the compound changes from semiconductor to metal with the increase of Mn-O-Mn angle.  相似文献   

4.
First-principles calculations using the augmented plane wave plus local orbitals method, as implemented in the WIEN2K code, have been carried out to study the A-B intersite charge transfer and the correlated electrical and magnetic properties of the perovskite BiCu(3)Fe(4)O(12), especially as regards the charge transfer. The results indicate that the charge transfer between A-site Cu and B-site Fe is by way of O 2p orbitals, and during this process orbital hybridization plays an important role. More importantly, the charge transfer is of 3d(9) + 4d(5)L(0.75) →3d(9)L + 4d(5) type (here L denotes an oxygen hole or a ligand hole). During this process, the magnetic interaction experiences a transition from Cu-Fe ferrimagnetic coupling to G-type antiferromagnetic coupling within B-site Fe with paramagnetic Cu(3+). As to electrical property, it undergoes a metal to insulator transition. All our calculated results are consistent with the available experimental results.  相似文献   

5.
A (3, 4, 14)-connected framework with complicated distorted triangular magnetic lattices, {[Co(7)(H(2)O)(4)(trz)(8)(sip)(2)]·3H(2)O}(n) (trz = 1,2,4-triazolate, sip = 5-sulfoisophthalate), exhibits continuous field-induced metamagnetic transition from an antiferromagnetic ordering to a ferrimagnetic state at 15 kOe, spin competition at 26 kOe and spin reorientation at 50 kOe, respectively.  相似文献   

6.
KCrF(3) has been systematically investigated by using the full-potential linearized augmented plane wave plus local orbital method within the generalized gradient approximation and the local spin density approximation plus the on-site Coulomb repulsion approach. The total energies for ferromagnetic and three different antiferromagnetic configurations are calculated in the high-temperature tetragonal and low-temperature monoclinic phases, respectively. It reveals that the ground state is the A-type antiferromagnetic in both phases. Furthermore, the ground states of the two phases are found to be Mott-Hubbard insulators with the G-type orbital ordering pattern. In addition, our calculations show the staggered orbital ordering of the 3d(x(2) ) and 3d(y(2) ) orbitals for the tetragonal phase and the 3d(z(2) ) and 3d(x(2) ) orbitals for the monoclinic phase, which is in agreement with the available data. More importantly, the relationship between magnetic structure and orbital ordering as well as the origin of the orbital ordering are analyzed in detail.  相似文献   

7.
Charge, orbital, and spin ordering of multiferroic BiMn(2)O(5) are investigated by the full-potential linearized augmented plane-wave (FPLAPW) method as implemented in the WIEN2K package. Both the generalized gradient approximation (GGA) as well as GGA plus the one-site Coulomb interaction (GGA+U) methods are considered for the exchange-correlation energy functional. The obtained results show that BiMn(2)O(5) is found stable in ferrimagnetic state with band gap about 1.23 eV. The results suggest that BiMn(2)O(5) contains two kinds of manganese: the ionicity of Mn1 (Mn(4+)) is +3.6 with magnetic moment of 2.40 μ(B) and the ionicity of Mn2 (Mn(3+)) is +3.4 with magnetic moment of 3.22 μ(B). While charge disproportion between Mn1 and Mn2 is small, the difference between e(g) minority occupancies of Mn(3+) and Mn(4+) cations is large. Both these two properties give direct evidence of charge ordering. The analysis of the Born effective charge reveals that the partial ferroelectric polarization (P(ele)) originates from the charge ordering, which is in agreement with a recent work by Brink and Khomskii [J. Phys.: Condens. Matter, 2008, 20, 434217].  相似文献   

8.
Kan E  Wu F  Lee C  Kang J  Whangbo MH 《Inorganic chemistry》2011,50(9):4182-4186
The 5d magnetic oxide Ca(3)LiOsO(6) has a trigonal arrangement of its LiOsO(6) chains parallel to the c-direction and hence has triangular arrangements of high-spin Os(5+) (d(3)) ions but exhibits no spin frustration and undergoes a long-range antiferromagnetic ordering at a high temperature. The origin of this apparently puzzling observation was examined by evaluating the nearest-neighbor Os-O···O-Os spin exchange interactions of Ca(3)LiOsO(6) on the basis of density functional calculations. Our study shows that, of the two nearest-neighbor interchain spin exchanges, one dominates over the other and that the intrachain spin exchange and the dominating interchain spin exchange are strong and form a three-dimensional antiferromagnetic spin lattice with no spin frustration, which is responsible for the long-range antiferromagnetic ordering of Ca(3)LiOsO(6) at high temperature. In determining the strengths of the Os-O···O-Os exchange interactions of Ca(3)LiOsO(6), the Li(+) and Ca(2+) ions of the O···Li(+)···O and O···Ca(2+)···O linkages are found to play only a minor role.  相似文献   

9.
Charge, orbital, and magnetic ordering of NdBaFe(2)O(5) and HoBaFe(2)O(5), the two end-members of the double-cell perovskite series RBaFe(2)O(5), have been characterized over the temperature range 2-450 K, using differential scanning calorimetry, neutron thermodiffractometry and high-resolution neutron powder diffraction. Upon cooling, both compounds transform from a class-III mixed valence (MV) compound, where all iron atoms exist as equivalent MV Fe(2.5+) ions, through a "premonitory" charge ordering into a class-II MV compound, and finally to a class-I MV phase at low-temperature. The latter phase is characterized by Fe(2+)/Fe(3+) charge ordering as well as orbital ordering of the doubly occupied Fe(2+) d(xz) orbitals. The relative simplicity of the crystal and magnetic structure of the low-temperature charge-ordered state provide an unusual opportunity to fully characterize the classical Verwey transition, first observed in magnetite, Fe(3)O(4). Despite isotypism of the title compounds at high temperature, neutron diffraction analysis reveals striking differences in their phase transitions. In HoBaFe(2)O(5), the Verwey transition is accompanied by a reversal of the direct Fe-Fe magnetic coupling across the rare earth layer, from ferromagnetic in the class-II and -III MV phases to antiferromagnetic in the low-temperature class-I MV phase. In NdBaFe(2)O(5), the larger Nd(3+) ion increases the Fe-Fe distance, thereby weakening the Fe-Fe magnetic interaction. This decouples the charge and magnetic ordering so that the Fe-Fe interaction remains ferromagnetic to low temperature. Furthermore, the symmetry of the charge-ordered class-I MV phase is reduced from Pmma to P2(1)()ma and the magnitude of the orbital ordering is diminished. These changes destabilize the charge-ordered state and suppress the temperature at which the Verwey transition occurs. A comparison of the magnetic and structural features of RBaFe(2)O(5) compounds is included in order to illustrate how structural tuning, via changes in the radius of the rare-earth ion, can be used to alter the physical properties of these double-cell perovskites.  相似文献   

10.
Cs(3)Mn(2)O(4), a new member of the small family of ternary manganese (II/III) mixed-valent compounds, has been synthesized via the azide/nitrate route and studied using powder and single crystal X-ray diffraction, magnetic susceptibility measurements and density functional theory (DFT). Its crystal structure (P2(1)/c, Z = 8, a = 1276.33(1) pm, b = 1082.31(2) pm, c = 1280.29(2) pm, β = 118.390(2)°) is based on one-dimensional MnO(2)(1.5-) chains built up from edge-sharing MnO(4) tetrahedra. The title compound is the first example of an intrinsically doped transition metalate of the series A(x)MnO(2), (A = alkali metal) where a complete 1:1 charge ordering of Mn(2+) and Mn(3+) is observed along the chains (-Mn(2+)-Mn(3+)-Mn(2+)-Mn(3+)-). From the magnetic point of view it basically consists of ferrimagnetic MnO(2) chains, where the Mn(2+) and Mn(3+) ions are strongly antiferromagnetically coupled up to high temperatures. Very interestingly, their long-range three-dimensional ordering below the Néel temperature (T(N)) ~12 K give rise to conspicuous field dependent magnetic ordering phenomena, for which we propose a consistent picture based on the change from antiferromagnetic to ferromagnetic coupling between the chains. Electronic structure calculations confirm the antiferromagnetic ordering as the ground state for Cs(3)Mn(2)O(4) and ferrimagnetic ordering as its nearly degenerate state.  相似文献   

11.
Zhang Y  Whangbo MH 《Inorganic chemistry》2011,50(21):10643-10647
The spin and charge order phenomena of the layered magnetic oxides YBaM(2)O(5) (M = Mn, Fe, Co) were analyzed on the basis of density functional calculations. We evaluated the spin exchange interactions of YBaM(2)O(5) by performing energy-mapping analysis based on density functional calculations to find why they undergo a three-dimensional magnetic ordering at high temperature. We estimated the relative stabilities of the checkerboard and stripe charge order patterns of YBaM(2)O(5) (M = Mn, Fe, Co) by optimizing their structures with density functional calculations to probe if the nature of the charge order pattern depends on whether their transition-metal ions are Jahn-Teller active.  相似文献   

12.
The semiconductor–semiconductor transition of La2RuO5 is studied by means of augmented spherical wave (ASW) electronic structure calculations as based on density functional theory and the local density approximation. This transition has lately been reported to lead to orbital ordering and a quenching of the local spin magnetic moment. Our results give strong hints for a different orbital ordering scenario than the one previously proposed. In our type of ordering the local S = 1 moment at the Ru sites is preserved in the low-temperature phase. The unusual magnetic behaviour is interpreted by the formation of spin ladders resulting from the structural transformations occurring at the transition. The spin ladders are characterized by antiferromagnetic coupling along the rungs. The loss of the total spin moment is attributed to a spin-Peierls transition.  相似文献   

13.
Xiang HP  Liu XJ  Zhao EJ  Meng J  Wu ZJ 《Inorganic chemistry》2007,46(23):9575-9583
The electronic and magnetic properties of CaCu3Cr4O12 and CaCu3Cr2Sb2O12 are investigated by the use of the full-potential linearized augumented plane wave (FPLAPW) method. The calculated results indicate that CaCu3Cr4O12 is a ferrimagnetic and half-metallic compound, in good agreement with previous theoretical studies. CaCu3Cr2Sb2O12 is a ferrimagnetic semiconductor with a small gap of 0.136 eV. In both compounds, because Cr4+ 3d (d2) and Cr3+ 3d (d3) orbitals are less than half filled, the coupling between Cr-Cu is antiferromagnetic, whereas that between Cu-Cu and Cr-Cr is ferromagnetic. The total net spin moment is 5.0 and 3.0 microB for CaCu3Cr4O12 and CaCu3Cr2Sb2O12, respectively. In CaCu3Cr4O12, the 3d electrons of Cr4+ are delocalized, which strengthens the Cr-Cr ferromagnetic coupling. For CaCu3Cr2Sb2O12, the doping of nonmagnetic ion Sb5+ reduces the Cr-Cr ferromagnetic coupling, and the half-filled Cr3+ t2g (t2g3) makes the chromium 3d electrons localized. In addition, the ordering arrangement of the octahedral chromium and antimony ions also prevents the delocalization of electrons. Hence, CaCu3Cr2Sb2O12 shows insulating behavior, in agreement with the experimental observation.  相似文献   

14.
We have performed the first‐principles calculations on the structural, electronic, and magnetic properties of 3d transition‐metal? (Cr, Mn, Fe, Co, and Ni) atoms doped 2D GaN nanosheet. The results show that 3d TM atom substituting one Ga leads to a structural reconstruction around the 3d TM impurity compared to the pristine GaN nanosheet. The doping of TM atom can induce magnetic moments, which are mainly located on the 3d TM atom and its nearest‐neighbor N atoms. It is found that Mn‐ and Ni‐doped GaN nanosheet with 100% spin polarization characters seem to be good candidates for spintronic applications. When two Ga atoms are substituted by two TM dopants, the ferromagnetic (FM) ordering becomes energetically more favorable for Cr‐, Mn‐, and Ni‐doped GaN nanosheet with different distances of two TM atoms. On the contrary, the antiferromagnetic (AFM) ordering is energetically more favorable for Fe‐doped GaN nanosheet. In addition, our GGA + U calculations show the similar results with GGA calculations. © 2016 Wiley Periodicals, Inc.  相似文献   

15.
The temperature dependence of magnetic susceptibility and sublattice magnetizations were calculated for a Heisenberg Hamiltonian of an S = 1 and S = 1/2 antiferromagnetic alternating spin chain by means of the many-body Green's function theory to show the possible occurrence of a ferrimagnetic phase transition for genuinely organic molecule-based magnets. The S = 1 site in the chain is composed of two S = 1/2 spins coupled by a finite ferromagnetic interaction. From the calculated results, it is found that the sublattice magnetization at low-spin S = 1/2 sites changes its sign from negative to positive with increasing temperature, giving rise to the spin alignments along the chain changing from antiferromagnetic to ferromagnetic ones, which indicates that there is a magnetic phase transition occurring. Because of the weak intermolecular antiferromagnetic interactions, the curves of the magnetic susceptibility multiplied by temperature (chiT) against temperature show a round peak at low temperatures, which is well consistent with recent experimental observations, and the ferrimagnetic phase transition could only be detected at an ultralow-temperature region and under very weak external magnetic fields in practical organic materials. From the analysis of the sublattice magnetizations, it is uncovered that the appearance of the low-temperature peak in the curves of the chiT originates from the ferromagnetic spin alignments for all the spins along the chain, and the intermolecular antiferromagnetic interactions play a pivotal role in ferrimagnetic spin alignments of the magnetic systems. It is also found that the higher spatial symmetry of the intermolecular antiferromagnetic interactions have contributions to stabilize the ferrimagnetic ordering state in the molecule-based magnetic materials.  相似文献   

16.
We report quantum chemical calculations providing the exchange coupling constants of the V[TCNE]2 model system, describing the amorphous room temperature molecular magnet V[TCNE] x (TCNE = tetracyanoethylene, x ~ 2). The geometry is optimized for the ideal lattice using density functional theory (DFT) calculations with periodic boundary conditions. Broken-symmetry DFT calculations indicate antiparallel spin alignment resulting in ferrimagnetic ordering, but heavily overestimate the value of the exchange coupling. Better estimates of the exchange coupling parameters between the V(II) ion and the [TCNE]? anionic radical are obtained by means of multiconfigurational calculations performed on smaller molecular models cut from the optimized crystal lattice. Complete active space self-consistent field and multireference second-order perturbation theory calculations provide the sign and the strength of the nearest-neighbor as well as next-nearest-neighbor interactions along all three crystallographic directions. We are able to explain also intuitively the mechanism for antiferromagnetic spin coupling in terms of the superexchange pathways, discussing the role of the main four types of contributions to superexchange. Moreover, we clarify the influence of the transition metal ion on the strength of the exchange interaction and on the critical temperature for long-range ferrimagnetic ordering.  相似文献   

17.
High-resolution X-ray diffraction and polarized neutron diffraction experiments have been performed on the Y-semiquinonate complex, Y(HBPz3)2(DTBSQ), in order to determine the charge and spin densities in the paramagnetic ground state, S = (1/2). The aim of these combined studies is to bring new insights to the antiferromagnetic coupling mechanism between the semiquinonate radical and the rare earth ion in the isomorphous Gd(HBPz3)2(DTBSQ) complex. The experimental charge density at 106 K yields detailed information about the bonding between the Y3+ ion and the semiquinonate ligand; the topological charge of the yttrium atom indicates a transfer of about 1.5 electrons from the radical toward the Y3+ ion in the complex, in agreement with DFT calculations. The electron density deformation map reveals well-resolved oxygen lone pairs with one lobe polarized toward the yttrium atom. The determination of the induced spin density at 1.9 K under an applied magnetic field of 9.5 T permits the visualization of the delocalized magnetic orbital of the radical throughout the entire molecule. The spin is mainly distributed on the oxygen atoms [O1 (0.12(1) mu B), O2(0.11(1) mu B)] and the carbon atoms [C21 (0.24(1) mu B), C22(0.20(1) mu B), C24(0.16(1) mu B), C25(0.12(1) mu B)] of the carbonyl ring. A significant spin delocalization on the yttrium site of 0.08(2) mu B is observed, proving that a direct overlap with the radical magnetic orbital can occur at the rare earth site and lead to antiferromagnetic coupling. The DFT calculations are in good quantitative agreement with the experimental charge density results, but they underestimate the spin delocalization of the oxygen toward the yttrium and the carbon atoms of the carbonyl ring.  相似文献   

18.
The compound La(3)Re(2)O(10) has been synthesized by solid-state reaction and characterized by powder neutron diffraction, SQUID magnetometry, and heat capacity measurements. Its structure consists of isolated [Re(2)O(10)](9-) dimer units of two edge-shared ReO(6) octahedra, separated by La(3+) within the lattice. The Re-Re distance within the dimer units is 2.488 A, which is indicative of metal-metal bonding with a bond order of 1.5. The average oxidation state of the Re atom is +5.5, leaving one unpaired electron per dimer unit (S = 1/2). Although the closest interdimer distance is 5.561 A, the magnetic susceptibility data and heat capacity measurements indicate this compound exhibits both short- and long-range magnetic order at surprisingly high temperatures. The zero field cooled (ZFC) magnetic susceptibility data show two broad features at 55 and 105 K, indicating short-range order, and a sharper cusp at 18 K, which signifies long-range antiferromagnetic order. The heat capacity of La(3)Re(2)O(10) shows a lambda-type anomaly at 18 K, which is characteristic of long-range magnetic order. DFT calculations determined that the unpaired electron resides in a pi-bonding orbital and that the unpaired electron density is widely delocalized over the atoms within the dimer, with high values at the bridging oxygens. Extended Hückel spin dimer calculations suggest possible interaction pathways between these dimer units within the crystal lattice. Results from the calculations and fits to the susceptibility data indicate that the short-range magnetic ordering may consist of 1-D antiferromagnetic linear chains of coupled S = 1/2 dimers. The magnetic structure of the antiferromagnetic ground state could not be determined by unpolarized neutron powder diffraction.  相似文献   

19.
DC magnetic susceptibility measurements on CsYbZnSe 3 show a broad magnetic transition at approximately 10 K and pronounced differences between zero-field-cooled and field-cooled data that lead to experimental effective magnetic moments of 4.26(5) BM and 4.39(4) BM, respectively. Specific heat measurements confirm that there is neither long-range ordering nor a phase transition between 1.8 and 380 K. First-principles electronic structure calculations with and without inclusion of spin-orbit coupling effects show that the spins of CsYbZnSe 3 prefer to orient along [010] rather than along either [100] or [001] of this orthorhombic material and that the spin exchange between adjacent Yb3+ ions along [100] is substantially antiferromagnetic. The magnetic properties of CsYbZnSe 3 are best described by an Ising uniform antiferromagnetic chain model.  相似文献   

20.
三角晶格反铁磁CuFeO_2的磁性和电子结构   总被引:1,自引:0,他引:1  
基于广义梯度近似(GGA)的密度泛函理论(DPT),,通过构造铁磁(FM),阻挫的三角非共线反铁磁(FAFM)、上上下下型共线反铁磁(↑↑↓↓AFM)三种不同磁性构型,从非共线磁性结构计算出发.优化了低温铜铁矿CuFeO_2晶体材料的几何结构,研究了磁性结构对电子结构、能隙和磁矩等的作用.计算发现上上下下型反铁磁自旋排列能促进能隙形成,总能降低,磁矩增大.由于上上下下型反铁磁与阻挫三角非共线反铁磁相能量接近,外场的作用容易导致磁性结构相变到阻挫的三角反铁磁态,其电子态密度分布与X光发射光谱测得的结果一致,即具有高自旋的Fe离子3d电子自旋向上的子带中心位于Cu3d能态之下,O2p能态以上,而且配位场理论分析表明Fe离子3d态自旋向下的空轨道为铁电极化提供了有利的化学环境.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号