首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of CuX(2) (X(-) ≠ F(-)) salts with 1 equiv of 3-pyridyl-5-tert-butylpyrazole (HL) in basic methanol yields blue solids, from which disk complexes of the type [Cu(7)(μ(3)-OH)(4)(μ-OR)(2)(μ-L)(6)](2+) and/or the cubane [Cu(4)(μ(3)-OH)(4)(HL)(4)](4+) can be isolated by recrystallization under the appropriate conditions. Two of the disk complexes have been prepared in crystalline form: [Cu(7)(μ(3)-OH)(4)(μ-OCH(2)CF(3))(2)(μ-L)(6)][BF(4)](2) (2) and [Cu(7)(μ(3)-OH)(4)(μ-OCH(3))(2)(μ-L)(6)]Cl(2)·xCH(2)Cl(2) (3·xCH(2)Cl(2)). The molecular structures of both compounds as solvated crystals can be described as [Cu?Cu(6)(μ-OH)(4)(μ-OR)(2)(μ-L)(6)](2+) (R = CH(2)CF(3) or CH(3)) adducts. The [Cu(6)(μ-OH)(4)(μ-OR)(2)(μ-L)(6)] ring is constructed of six square-pyramidal Cu ions, linked by 1,2-pyrazolido bridges from the L(-) ligands and by basal, apical-bridging hydroxy or alkoxy groups, while the central Cu ion is bound to the four metallamacrocyclic hydroxy donors in a near-regular square-planar geometry. The L(-) ligands project above and below the metal ion core, forming two bowl-shaped cavities that are fully (R = CH(2)CF(3)) or partially (R = CH(3)) occupied by the alkoxy R substituents. Variable-temperature magnetic susceptibility measurements on 2 demonstrated antiferromagnetic interactions between the Cu ions, yielding a spin-frustrated S = (1)/(2) magnetic ground state that is fully populated below around 15 K. Electrospray ionization mass spectrometry, UV/vis/near-IR, and electron paramagnetic resonance measurements imply that the heptacopper(II) disk motif is robust in organic solvents.  相似文献   

2.
A methoxide-bridged dinuclear Zn(II) complex of 1,3-[N,N'-bis(1,5,9-triazacyclododecane)]propane (1-Zn(II)2:(-OCH3)) was prepared, and its catalysis of the cyclization of a series of 2-hydroxypropyl aryl phosphates (4a-g) was investigated in methanol at pH 9.8, T = 25degreesC by stopped-flow spectrophotometry. An X-ray diffraction structure of the hydroxide analogue of 1-Zn(II)2:(-OCH3), namely 1-Zn(II)2:(-OH), reveals that each of the Zn(II) ions is coordinated by the three N's of the triazacyclododecane units and a bridging hydroxide. The cyclizations of substrates 4a-g reveal a progressive change in the observed kinetics from Michaelis-Menten saturation kinetics for the poorer substrates (4-OCH3 (4g); 4-H (4f); 3-OCH3 (4e); 4-Cl (4d); 3-NO2, (4c)) to second-order kinetics (linear in 1-Zn(II)2:(-OCH3)) for the better substrates (4-NO2,3-CH3 (4b); 4-NO2, (4a)). The data are analyzed in terms of a multistep process whereby a first formed complex rearranges to a reactive complex with a doubly activated phosphate coordinated to both metal ions. The kinetic behavior of the series is analyzed in terms of change in rate-limiting step for the catalyzed reaction whereby the rate-limiting step for the poorer substrates (4g-c) is the chemical step of cyclization of the substrate, while for the better substrates (4b,a) the rate-limiting step is binding. The catalysis of the cyclization of these substrates is extremely efficient. The kcat/KM values for the catalyzed reactions range from 2.75 x 10(5) to 2.3 x 10(4) M-1 s-1, providing an acceleration of 1 x 10(8) to 4 x 10(9) relative to the methoxide reaction (k2OCH3, which ranges from 2.6 x 10(-3) to 5.9 x 10(-6) M-1 s-1 for 4a-g). At a pH of 9.8 where the catalyst is maximally active, the acceleration for the substrates ranges from (1 - 4) x 10(12) relative to the background reaction at the same pH. Detailed energetics calculations show that the transition state for the catalyzed reaction comprising 1-Zn(II)2, methoxide, and 4 is stabilized by about -21 to -23 kcal/mol relative to the transition state for the methoxide reaction. The pronounced catalytic activity is attributed to a synergism between a positively charged catalyst that has high affinity for the substrate and for the transition state for cyclization, and a medium effect involving a reduced polarity/dielectric constant that complements a reaction where an oppositely charged reactant and catalyst experience charge dispersal in the transition state.  相似文献   

3.
An ortho-palladated complex Pd(dmba)(py)(OTf) (9), or Pd(N,N-dimethylbenzylamine)(pyridine)(trifluoromethanesulfonate), was synthesized and its solution properties in methanol studied as a function of pH. In neutral solution the triflate dissociates from the complex to give a dominant form Pd(dmba)(py)(HOCH3), and in acid the pyridine dissociates to give Pyr-H+ and Pd(dmba)(HOCH3)(HOCH3). Under basic conditions, Pd(dmba)(py)(HOCH3) ionizes to give Pd(dmba)(py)(-OCH3) from which the pyridine can dissociate to yield a mixture of a bis-methoxy-bridged dimer (Pd(dmba)(-OCH3))2 (15-dimer), and its monomer Pd(dmba)(HOCH3)(-OCH3). Kinetic studies under buffered conditions reveal that 9 is an effective catalyst for the methanolysis of fenitrothion and other P=S pesticides. The active form of the catalyst is a basic one having one associated methoxide generated with an apparent (s)(s)pK(a) of 10.8. Analysis of the change in the UV/vis spectrum as a function of pH generates a spectrophotometric (s)(s)pK(a) of 10.8 +/- 0.1. This catalytic system is shown to promote the methanolysis of fenitrothion (3), diazinon (4), quinalphos (5), coumaphos (10) and dichlofenthion (11) at 0.05 mol dm(-3) triethyl amine buffer, (s)(s)pH 10.8, 25 degrees C, under turnover conditions where the [phosphorothioate]/[9] ratio is 48.6, 13.4, 13.4, 18.6, and 48.6 respectively. In all cases, the products were derived from displacement of the leaving group by methoxide, the second-order turnover rate constants being 36.9, 0.45, 0.12, >146.7 and 44.3 dm3 mol(-1) s(-1) respectively. An associative mechanism for the catalyzed methanolysis of the P=S pesticides is proposed where a transiently coordinated S=P substrate is intramolecularly attacked by the Pd(II)-coordinated methoxide.  相似文献   

4.
Dinuclear Cd(II), Cu(II), and Zn(II) complexes of L2OH (L2OH = 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane) are compared as catalysts for cleavage of the RNA analogue HpPNP (HpPNP = 2-hydroxypropyl 4-nitrophenyl phosphate) at 25 degrees C, I = 0.10 M (NaNO(3)). Zn(II) and Cu(II) readily form dinuclear complexes at millimolar concentrations and a 2:1 ratio of metal ion to L2OH at neutral pH. The dinuclear Zn(2)(L2O) and Cu(2)(L2O) complexes have a bridging alkoxide group that brings together the two cations in close proximity to facilitate cooperative catalysis. Under similar conditions, the dinuclear complex of Cd(II) is a minor species in solution; only at high pH values (pH 10.4) does the Cd(2)(L2O) complex become the predominant species in solution. Analysis of the second-order rate constants for cleavage of HpPNP by Zn(2)(L2O) is straightforward because a linear dependence of pseudo-first-order rate constant on dinuclear complex is observed over a wide pH range. In contrast, plots of pseudo-first-order rate constants for cleavage of HpPNP by solutions containing a 2:1 ratio of Cd(II) to L2OH as a function of increasing L2OH are curved, and second-order rate constants are obtained by fitting the kinetic data to an equation for the formation of the dinuclear Cd(II) complex as a function of pH and [L2OH]. Second-order rate constants for cleavage of HpPNP by these dinuclear complexes at pH 9.3 and 25 degrees C vary by 3 orders of magnitude in the order Cd(2)(L2O) (2.8 M(-)(1) s(-)(1)) > Zn(2)(L2O) (0.68 M(-)(1) s(-)(1)) > Cu(2)(L2O) (0.0041 M(-1) s(-1)). The relative reactivity of these complexes is discussed in terms of the different geometric preferences and Lewis acidity of the dinuclear Zn(II), Cu(II), and Cd(II) complexes, giving insight into the importance of these catalyst properties in the cleavage of phosphate diesters resembling RNA.  相似文献   

5.
Zhao H  Qu ZR  Ye Q  Wang XS  Zhang J  Xiong RG  You XZ 《Inorganic chemistry》2004,43(6):1813-1815
The reaction of Cu(CH(3)CN)(4)ClO(4) with 2-pyridylacrylic acid (2-HPYA) affords an unusual mixed-valence Cu(I)-Cu(II) 3-D framework ([Cu(II)(2-PYA)(2)](3).[Cu(I)(2-PYA)](2).(H2O)(2))n (1) with a novel topology which features Cu(II) dimeric units (or paddle-wheel unit). The almost perpendicular coordinating direction between the N atom of pyridyl and the O atom of carboxylate groups may be responsible for the formation of such a novel network.  相似文献   

6.
Using an acyclic hexadentate pyridine amide ligand, containing a -OCH(2)CH(2)O- spacer between two pyridine-2-carboxamide units (1,4-bis[o-(pyrydine-2-carboxamidophenyl)]-1,4-dioxabutane (H(2)L(9)), in its deprotonated form), four new complexes, [Co(II)(L(9))] (1) and its one-electron oxidized counterpart [Co(III)(L(9))][NO(3)]·2H(2)O (2), [Ni(II)(L(9))] (3) and [Cu(II)(L(9))] (4), have been synthesized. Structural analyses revealed that the Co(II) centre in 1 and the Ni(II) centre in 3 are six-coordinate, utilizing all the available donor sites and the Cu(II) centre in 4 is effectively five-coordinated (one of the ether O atoms does not participate in coordination). The structural parameters associated with the change in the metal coordination environment have been compared with corresponding complexes of thioether-containing hexadentate ligands. The μ(eff) values at 298 K of 1-4 correspond to S = 3/2, S = 0, S = 1 and S = 1/2, respectively. Absorption spectra for all the complexes have been investigated. EPR spectral properties of the copper(II) complex 4 have been investigated, simulated and analyzed. Cyclic voltammetric experiments in CH(2)Cl(2) reveal quasireversible Co(III)-Co(II), Ni(III)-Ni(II) and Cu(II)-Cu(I) redox processes. In going from ether O to thioether S coordination, the effect of the metal coordination environment on the redox potential values of Co(III)-Co(II) (here the effect of spin-state as well), Ni(III)-Ni(II) and Cu(II)-Cu(I) processes have been systematically analyzed.  相似文献   

7.
A new heterometallic Ni(II)-Cu(II) decanuclear cluster, {[Ni(4)Cu(6)(μ-OH(2))(2)(dpkO(2))(8)(OAc)(4)(H(2)O)(4)]·2CH(3)OH·17H(2)O} (1), has been synthesized by self-assembly of the constituent metal ions and the precursor di-2-pyridylketone (dpk) of multinucleating ligand dpkO(2)(2-) and is structurally characterized. The cluster 1 is formed by the union of two symmetry-related distorted cubane-like pentanuclear cores. A magnetic study of 1 reveals strong antiferromagnetic interactions operating through the Ni-O-Ni pathway, which is independent of the assumption D = 0 or D ≠ 0. The pentanuclear cores are ferromagnetically coupled, as supported by density functional theory calculations.  相似文献   

8.
Formate is an inhibitor of cytochrome oxidases and also effects conversion of the bovine heart enzyme from the "fast" to the "slow" cyanide-binding form. The molecular basis of these effects is unknown; one possibility is that formate inserts as a bridge into the binuclear heme a(3)-Cu(B) site, impeding the binding of dioxygen or cyanide. Consequently, Fe-Cu-carboxylate interactions are a matter of current interest. We have initiated an examination of such interactions by the synthesis of the first examples of [Fe(III)-(&mgr;(2):eta(2)-RCO(2))-Cu(II)] bridges, minimally represented by Fe(III)-L + Cu(II)-O(2)CR --> [Fe(III)-(RCO(2))-Cu(II)] + L. A series of Cu(II) precursor complexes and solvate forms have been prepared and their structures determined, including [Cu(Me(5)dien)(O(2)CH)](+) (3), [Cu(Me(5)dien)(O(2)CH)(MeOH)](+) (4), [Cu(Me(6)tren)(O(2)CH)](+) (5), and [Cu(Me(5)dien)(OAc)](+) (6). [4](ClO(4)) was obtained in monoclinic space group P2(1)/n with a = 8.166(3) ?, b = 15.119(5) ?, c = 15.070(4) ?, beta = 104.65(2) degrees, and Z = 4. [5](ClO(4))/[6](ClO(4)) crystallize in orthorhombic space groups Pnma/Pna2(1) with a = 16.788(2)/14.928(5) ?, b = 9.542(1)/9.341(4) ?, c = 12.911(1)/12.554(4) ?, and Z = 4/4. In all cases, the carboxylate ligand is terminal and is bound in a syn orientation. Also prepared for the purpose of structural comparison was [Fe(OEP)(O(2)CH)], which occurred in monoclinic space group P2(1)/c with a = 13.342(2) ?, b = 13.621(2) ?, c = 19.333(2) ?, beta = 106.12(2) degrees, and Z = 4. The desired bridges were stabilized in the assemblies [(OEP)Fe(O(2)CH)Cu(Me(5)dien)(OClO(3))](+) (9), [(OEP)Fe(OAc)Cu(Me(5)dien)](2+) (10), and {(OEP)Fe[(O(2)CH)Cu(Me(6)tren)](2)}(3+) (11), which were prepared by the reaction of 3, 6, and 5, respectively, with [Fe(OEP)(OClO(3))] in acetone or dichloromethane. [9](ClO(4))/[10](ClO(4))(2).CH(2)Cl(2) crystallize in triclinic space group P&onemacr; with a = 9.016(3)/13.777(3) ?, b = 15.377(5)/13.847(3) ?, c = 19.253(5)/17.608(4) ?, alpha = 78.12(3)/96.82(3) degrees, beta = 86.30(4)/108.06(3) degrees, gamma = 76.23(3)/114.32(3) degrees, and Z = 2/2. Each assembly contains a [Fe(III)-(RCO(2))-Cu(II)] bridge but with the differing orientations anti-anti (9) and syn-anti (10, 11). The compound [11](ClO(4))(2)(SbF(6)) occurs in orthorhombic space group Pbcn with a = 12.517(6) ?, b = 29.45(1) ?, c = 21.569(8) ?, and Z = 4. Complex 11 is trinuclear; the Fe(III) site has two axial formate ligands with bond distances indicative of a high-spin configuration. Structural features of 9-11 are discussed and are considered in relation to the possible insertion of formate into the binuclear sites of two oxidases whose structures were recently determined. The present results contribute to the series of molecular assemblies with the bridge groups [Fe(III)-X-Cu(II)], X = O(2)(-), OH(-), and RCO(2)(-), all with a common high-spin heme, thereby allowing an examination of electronic structure as dependent on the bridging atom or group and bridge structure. (Me(5)dien = 1,1,4,7,7-pentamethyldiethylenetriamine; Me(6)tren = tris(2-(dimethylamino)ethyl)amine; OEP = octaethylporphyrinate(2-).)  相似文献   

9.
Two novel 3-D coordination polymers with different Cu(II) subunits as nodes and mixed bridging ligands as linkers, namely [Cu(5)(μ(3)-OH)(2)(1,3-bip)(2)(CH(3)O-ip)(4)](n) (1) and {[Cu(4)(1,3-btp)(2)(CH(3)O-p)(4)(H(2)O)(2)]·2H(2)O}(n) (2) (CH(3)O-H(2)ip = 5-methoxyisophthalate, 1,3-bip = 1,3-bis(imidazol)propane, 1,3-btp = 1,3-bis(1,2,4-triazol-1-yl)propane), were prepared under hydrothermal conditions. Complex 1 exhibits a CsCl-type network with [Cu(5)(μ(3)-OH)(2)](8+) clusters acting as nodes, which represents the first 3-D network based on pentanuclear Cu(II) clusters. Complex 2 features a 3-D pillared-layer network with (4,6)-connected (4(4).6(2))(4(4).6(8).8(3))-fsc topology, which is a rare example of homometallic coordination polymers constructed by alternate binuclear metal clusters and single metal centres. Variable-temperature magnetic susceptibility measurements show dominant ferromagnetic interactions in the pentanuclear clusters of 1 and strong antiferromagnetic interactions in the dinuclear paddle-wheel units of 2.  相似文献   

10.
Dinucleating ligands having two metal-binding sites bridged by an imidazolate moiety, Hbdpi, HMe(2)bdpi, and HMe(4)bdpi (Hbdpi = 4,5-bis(di(2-pyridylmethyl)aminomethyl)imidazole, HMe(2)bdpi = 4,5-bis((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)aminomethyl)imidazole, HMe(4)bdpi = 4,5-bis(di(6-methyl-2-pyridylmethyl)aminomethyl)imidazole), have been designed and synthesized as model ligands for copper-zinc superoxide dismutase (Cu,Zn-SOD). The corresponding mononucleating ligands, MeIm(Py)(2), MeIm(Me)(1), and MeIm(Me)(2) (MeIm(Py)(2) = (1-methyl-4-imidazolylmethyl)bis(2-pyridylmethyl)amine, MeIm(Me)(1) = (1-methyl-4-imidazolylmethyl)(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine, MeIm(Me)(2) = (1-methyl-4-imidazolyl-methyl)bis(6-methyl-2-pyridylmethyl)amine), have also been synthesized for comparison. The imidazolate-bridged Cu(II)-Cu(II) homodinuclear complexes represented as [Cu(2)(bdpi)(CH(3)CN)(2)](ClO(4))(3).CH(3)CN.3H(2)O (1), [Cu(2)(Me(2)bdpi)(CH(3)CN)(2)](ClO(4))(3) (2), [Cu(2)(Me(4)bdpi)(H(2)O)(2)](ClO(4))(3).4H(2)O (3), a Cu(II)-Zn(II) heterodinuclear complex of the type of [CuZn(bdpi)(CH(3)CN)(2)](ClO(4))(3).2CH(3)CN (4), Cu(II) mononuclear complexes of [Cu(MeIm(Py)(2))(CH(3)CN)](ClO(4))(2).CH(3)CN (5), [Cu(MeIm(Me)(1))(CH(3)CN)](ClO(4))(2)( )()(6), and [Cu(MeIm(Me)(2))(CH(3)CN)](ClO(4))(2)( )()(7) have been synthesized and the structures of complexes 5-7 determined by X-ray crystallography. The complexes 1-7 have a pentacoordinate structure at each metal ion with the imidazolate or 1-methylimidazole nitrogen, two pyridine nitrogens, the tertiary amine nitrogen, and a solvent (CH(3)CN or H(2)O) which can be readily replaced by a substrate. The reactions between complexes 1-7 and hydrogen peroxide (H(2)O(2)) in the presence of a base at -80 degrees C yield green solutions which exhibit intense bands at 360-380 nm, consistent with the generation of hydroperoxo Cu(II) species in all cases. The resonance Raman spectra of all hydroperoxo intermediates at -80 degrees C exhibit a strong resonance-enhanced Raman band at 834-851 cm(-1), which shifts to 788-803 cm(-1) (Deltanu = 46 cm(-1)) when (18)O-labeled H(2)O(2) was used, which are assigned to the O-O stretching frequency of a hydroperoxo ion. The resonance Raman spectra of hydroperoxo adducts of complexes 2 and 6 show two Raman bands at 848 (802) and 834 (788), 851 (805), and 835 (789) cm(-1) (in the case of H(2)(18)O(2), Deltanu = 46 cm(-1)), respectively. The ESR spectra of all hydroperoxo complexes are quite close to those of the parent Cu(II) complexes except 6. The spectrum of 6 exhibits a mixture signal of trigonal-bipyramid and square-pyramid which is consistent with the results of resonance Raman spectrum.  相似文献   

11.
Two new 1D coordination polymers, [Cu(3)(μ(3)-OH)(ppk)(3)(μ-N(CN)(2))(OAc)](n) (1) and {[Cu(4)(pdmH)(2)(pdm)(2)(μ(2)-OH)(H(2)O)]·ClO(4)}(n) (2) based on two different blocking ligands phenyl-2-pyridylketoxime (ppk) and pyridine-2,6-dimethanol (pdmH(2)) have been synthesized and were characterized by X-ray single crystal structural analysis. In compound 1, the hydroxido-bridged trinuclear core, {Cu(3)(μ(3)-OH)(ppk)(3)(OAc)}, acts as secondary building units and are connected by the N(CN)(2)(-) anions resulting in a one dimensional (1D) coordination polymer. The 1D coordination chains undergo π-π interactions giving rise to a 3D supramolecular framework. In compound 2, tetrameric [Cu(4)(pdmH)(2)(pdm)(2)(H(2)O)](2+) cores are linked via hydroxido groups forming a zigzag 1D coordination chain where non-coordinated ClO(4)(-) ions are intercalated between the chains. Variable temperature magnetic susceptibility study of suggests that Cu(II) ions in the trinuclear Cu(3)(μ(3)-OH) cores are antiferromagnetically coupled with J = -459.7 cm(-1) and g = 2.11 and the trinuclear cores are further weakly coupled antiferromagnetically (zj' = -5.25 cm(-1)) through the N(CN)(2)(-) bridging ligand. Investigation of the magnetic properties of reveals that Cu(II) ions are coupled antiferromagnetically in the tetranuclear core with J = -27.1 cm(-1) and g = 2.17; the Cu(II)(4) building units are further coupled antiferromagnetically with zj' = -9.65 cm(-1). The experimental magnetic behaviours of 1 and 2 are correlated by first principle DFT calculations which provide a qualitative understanding of the origin of antiferromagnetic interactions in both cases.  相似文献   

12.
Four new Cu(II) complexes {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(7)H(5)O(2))(2)·6H(2)O 1, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(NO(3))(2)(C(5)H(6)O(4))·8H(2)O 2, {[Cu(4)(bpy)(4)(OH)(4)(H(2)O)(2)]}(C(5)H(6)O(4))(2)·16H(2)O 3 and {[Cu(6)(bpy)(6)(OH)(6)(H(2)O)(2)]}(C(8)H(7)O(2))(6)·12H(2)O 4 were synthesized (bpy = 2,2'-bipyridine, H(2)(C(5)H(6)O(4)) = glutaric acid, H(C(7)H(5)O(2)) = benzoic acid, H(C(8)H(7)O(2)) = phenyl acetic acid). The building units in 1-3 are the tetranuclear [Cu(4)(bpy)(4)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(2)](4+) complex cations, and in 4 the hexanuclear [Cu(6)(bpy)(6)(H(2)O)(2)(μ(2)-OH)(2)(μ(3)-OH)(4)](6+) complex cations, respectively. The tetra- and hexanuclear cluster cores [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] and [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] in the complex cations could be viewed as from step-like di- and trimerization of the well-known hydroxo-bridged dinuclear [Cu(2)(μ(2)-OH)(2)] entities via the out-of-plane Cu-O(H) bonds. The complex cations are supramolecularly assembled into (4,4) topological networks via intercationic ππ stacking interactions. The counteranions and lattice H(2)O molecules are sandwiched between the 2D cationic networks to form hydrogen-bonded networks in 1-3, while the phenyl acetate anions and the lattice H(2)O molecules generate 3D hydrogen-bonded anionic framework to interpenetrate with the (4,4) topological cationic networks with the hexanuclear complex cations in the channels. The ferromagnetic coupling between Cu(II) ions in the [Cu(4)(μ(2)-OH)(2)(μ(3)-OH)(2)] cores of 1-3 is significantly stronger via equatorial-equatorial OH(-) bridges than via equatorial-apical ones. The outer and the central [Cu(2)(OH)(2)] unit within the [Cu(6)(μ(2)-OH)(2)(μ(3)-OH)(4)] cluster cores in 4 exhibit weak ferromagnetic and antiferromagnetic interactions, respectively. Results about i.r. spectra, thermal and elemental analyses are presented.  相似文献   

13.
The Fe(II) of the binuclear Fe(II)Fe(III) active site of pig purple acid phosphatase (uteroferrin) has been replaced in turn by five M(II) ions (Mn(II), Co(II), Ni(II), Cu(II), and Zn(II)). An uptake of 1 equiv of M(II) is observed in all cases except that of Cu(II), when a second more loosely bound Cu(II) is removed by treatment with edta. The products have been characterized by different analytical procedures and by UV-vis spectrophotometry. At 25 degrees C, I = 0.100 M (NaCl), the nonenzymatic reactions with H(2)PO(4)(-) give the mu-phosphato product, and formation constants K/M(-1) show an 8-fold spread at pH 4.9 of 740 (Mn), 165 (Fe), 190 (Co), 90 (Ni), 800 (Cu), 380 (Zn). The variations in K correlate well with stability constants for the complexing of H(2)PO(4)(-) and (CH(3)O)HPO(3)(-) with M(II) hexaaqua ions. At pH 4.9 with [H(2)PO(4)(-)] > or = 3.5 mM rate constants k(obs) decrease, and an inhibition process in which a second [H(2)PO(4)(-)] coordinates to the dinuclear center is proposed. The mechanism considered accounts for most but not all of the features displayed. Thus K(1) values for the coordination of phosphate to M(II) are in the range10-60 M(-1), whereas K(2) values for the bridging of the phosphate to Fe(III) are in the narrower range 7.8-12.4. From the fits described K(i) approximately 10(3) M(-1) for the inhibition step, which is independent of the identity of M(II). Values of k(obs) decrease with increasing pH, giving pK(a) values which are close to 3.8 and independent of M(II) (Fe(II), Zn(II), Mn(II)). The acid dissociation process is assigned to Fe(III)-OH(2) to Fe(III)-OH(-), where OH(-) is less readily displaced by phosphate.  相似文献   

14.
TMEDA-free (TMEDA: tetramethylethylenediamine) LiCH(2)SMe is a suitable reagent for the selective introduction of (methylthio)methyl groups into PhBBr(2) and its p-silylated derivative Me(3)Si--C(6)H(4)--BBr(2). The resulting compounds, R*--C(6)H(4)--B(Br)(CH(2)SMe) (R*=H: 2; R*=SiMe(3): 7) and PhB(CH(2)SMe)(2) (3), form cyclic dimers through B--S adduct bonds in solution and in the solid state. Compounds 2 and 3 have successfully been used for preparing the (N(2)S) scorpionate [PhBpz(2)(CH(2)SMe)](-) ([5](-)) (pz: pyrazol-1-yl) and the (NS(2)) scorpionate [PhBpz(CH(2)SMe)(2)](-), respectively. Compound 7 proved to be an excellent building block for the heteroditopic poly(pyrazol-1-yl)borate p-[pz(3)B--C(6)H(4)--Bpz(2)(CH(2)SMe)](2-) ([10](2-)) that mimics the two ligation sites of the copper enzymes peptidylglycine alpha-hydroxylating monooxygenase and dopamine beta-monooxygenase. Treatment of the monotopic tripod [5](-) with CuCl and CuBr(2) results in the formation of complexes K[Cu(5)(2)] and [Cu(5)(2)]. An X-ray crystallography study of K[Cu(5)(2)] revealed a tetrahedral (N(2)S(2)) coordination environment for the Cu(I) ion, whereas the Cu(II) ion of [Cu(5)(2)] possesses a square-pyramidal (N(4)S) ligand sphere (S-atom in the axial position). The remarkable redox properties of K[Cu(5)(2)] and [Cu(5)(2)] have been assessed by cyclic voltammetry and quantum chemical calculations. The reaction of K[Cu(5)(2)] with dry air leads to the Cu(II) species [Cu(5)(2)] and to a tetranuclear Cu(II) complex featuring [PhB(O)pz(2)](2-) ligands. Addition of CuCl to K(2)[10] gives the complex K(3)[Cu(10)(2)] containing two ligand molecules per Cu(I) center. The Cu(I) ion binds to both heteroscorpionate moieties and thereby establishes a coordination environment similar to that of the Cu(I) ion in K[Cu(5)(2)].  相似文献   

15.
The cleavage of the diribonucleoside UpU (uridylyl-3'-5'-uridine) to form uridine and uridine (2',3')-cyclic phosphate catalyzed by the dinuclear Zn(II) complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (Zn(2)(1)(H(2)O)) has been studied at pH 7-10 and 25 degrees C. The kinetic data are consistent with the accumulation of a complex between catalyst and substrate and were analyzed to give values of k(c) (s(-)(1)), K(d) (M), and k(c)/K(d) (M(-)(1) s(-)(1)) for the Zn(2)(1)(H(2)O)-catalyzed reaction. The pH rate profile of values for log k(c)/K(d) for Zn(2)(1)(H(2)O)-catalyzed cleavage of UpU shows the same downward break centered at pH 7.8 as was observed in studies of catalysis of cleavage of 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) and uridine-3'-4-nitrophenyl phosphate (UpPNP). At low pH, where the rate acceleration for the catalyzed reaction is largest, the stabilizing interaction between Zn(2)(1)(H(2)O) and the bound transition states is 9.3, 7.2, and 9.6 kcal/mol for the catalyzed reactions of UpU, UpPNP, and HpPNP, respectively. The larger transition-state stabilization for Zn(2)(1)(H(2)O)-catalyzed cleavage of UpU (9.3 kcal/mol) compared with UpPNP (7.2 kcal/mol) provides evidence that the transition state for the former reaction is stabilized by interactions between the catalyst and the C-5'-oxyanion of the basic alkoxy leaving group.  相似文献   

16.
Methanol solutions containing Cd(II), Mn(II), and a palladacycle, (dimethanol bis(N,N-dimethylbenzylamine-2C,N)palladium(II) (3), are shown to promote the methanolytic transesterification of O-methyl O-4-nitrophenyl phosphorothioate (2b) at 25 °C with impressive rate accelerations of 10(6)-10(11) over the background methoxide promoted reaction. A detailed mechanistic investigation of the methanolytic cleavage of 2a-d having various leaving group aryl substitutions, and particularly the 4-nitrophenyl derivative (2b), catalyzed by Pd-complex 3 is presented. Plots of k(obs) versus palladacycle [3] demonstrate strong saturation binding to form 2b:3. Numerical fits of the kinetic data to a universal binding equation provide binding constants, K(b), and first order catalytic rate constants for the methanolysis reaction of the 2b:3 complex (k(cat)) which, when corrected for buffer effects, give corrected (k(cat)(corr)) rate constants. A sigmoidal shaped plot of log(k(cat)(corr)) versus (s)(s)pH (in methanol) for the cleavage of 2b displays a broad (s)(s)pH independent region from 5.6 ≤ (s)(s)pH ≤ 10 with a k(minimum) = (1.45 ± 0.24) × 10(-2) s(-1) and a [lyoxide] dependent wing plateauing above a kinetically determined (s)(s)pK(a) of 12.71 ± 0.17 to give a k(maximum) = 7.1 ± 1.7 s(-1). Br?nsted plots were constructed for reaction of 2a-d at (s)(s)pH 8.7 and 14.1, corresponding to reaction in the midpoints of the low and high (s)(s)pH plateaus. The Br?nsted coefficients (β(LG)) are computed as -0.01 ± 0.03 and -0.86 ± 0.004 at low and high (s)(s)pH, respectively. In the low (s)(s)pH plateau, and under conditions of saturating 3, a solvent deuterium kinetic isotope effect of k(H)/k(D) = 1.17 ± 0.08 is observed; activation parameters (ΔH(Pd)(++) = 14.0 ± 0.6 kcal/mol and ΔS(Pd)(++)= -20 ± 2 cal/mol·K) were obtained for the 3-catalyzed cleavage reaction of 2b. Possible mechanisms are discussed for the reactions catalyzed by 3 at low and high sspH. This catalytic system is shown to promote the methanolytic cleavage of O,O-dimethyl phosphorothioate in CD3OD, producing (CD3O)2P═O(S(-)) with a half time for reaction of 34 min.  相似文献   

17.
An isomorphous series of 10 microporous copper-based metal-organic frameworks (MOFs) with the general formulas (∞)(3)[{Cu(3)(μ(3)-OH)(X)}(4){Cu(2)(H(2)O)(2)}(3)(H-R-trz-ia)(12)] (R = H, CH(3), Ph; X(2-) = SO(4)(2-), SeO(4)(2-), 2 NO(3)(2-) (1-8)) and (∞)(3)[{Cu(3)(μ(3)-OH)(X)}(8){Cu(2)(H(2)O)(2)}(6)(H-3py-trz-ia)(24)Cu(6)]X(3) (R = 3py; X(2-) = SO(4)(2-), SeO(4)(2-) (9, 10)) is presented together with the closely related compounds (∞)(3)[Cu(6)(μ(4)-O)(μ(3)-OH)(2)(H-Metrz-ia)(4)][Cu(H(2)O)(6)](NO(3))(2)·10H(2)O (11) and (∞)(3)[Cu(2)(H-3py-trz-ia)(2)(H(2)O)(3)] (12(Cu)), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.  相似文献   

18.
Intramolecular ligand hydroxylation was observed during the reactions of dioxygen with the dicopper(I) complexes of the ligands L(1)(L(1)=alpha,alpha'-bis[(2-pyridylethyl)amino]-m-xylene) and L(3)(L(3)=alpha, alpha'-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-m-xylene). The dinuclear copper(I) complex [Cu(2)L(3)](ClO(4))(2) and the dicopper(II) complex [Cu(2)(L(1)-O)(OH)(ClO(4))]ClO(4) were characterized by single-crystal X-ray structure analysis. Furthermore, phenolate-bridged complexes were synthesized with the ligand L(2)-OH (structurally characterized [Cu(2)(L(2)-O)Cl(3)] with L(2)=alpha, alpha'-bis[N-methyl-N-(2-pyridylethyl)amino]-m-xylene; synthesized from the reaction between [Cu(2)(L(2)-O)(OH)](ClO(4))(2) and Cl(-)) and Me-L(3)-OH: [Cu(2)(Me-L(3)-O)(mu-X)](ClO(4))(2)xnH(2)O (Me-L(3)-OH = 2,6-bis[N-(2-pyridylethyl)-N-(2-pyridylmethyl)amino]-4-methylphenol and X = C(3)H(3)N(2)(-)(prz), MeCO(2)(-) and N(3)(-)). The magnetochemical characteristics of compounds were determined by temperature-dependent magnetic studies, revealing their antiferromagnetic behaviour [-2J(in cm(-1)) values: -92, -86 and -88; -374].  相似文献   

19.
Using a (2-pyridyl)ethylamine-appended carboxylate ligand a new cluster [Cu(II)(7)(L)(4)(μ(3)-OH)(2)(H(2)O)(2)(DMF)(2)][ClO(4)](4)·4H(2)O (1) [L(2-): N-{CH(2)CH(2)(2-pyridyl)}(CH(2)CH(2)CO(2))(2)] is synthesized, as a result of 'coordination-driven self-assembly'. The structure of 1 is unique and consists of a centrosymmetric carboxylato- and hydroxo-bridged heptanuclear copper(II) cation, with body-centred anti-prismatic topology. The four crystallographically independent copper(II) centres differ markedly in their coordination geometry. In addition to establishing cluster authenticity, the structural analysis of 1 discloses two notable features. The existence of {Cu(II)(3)(μ(3)-OH)}(5+) core and H-bonded metal-coordinated carboxylate and water unit, with water acting as a proton donor. Both of these features have biological implications. Magnetic measurements reveal that in this unprecedented cluster the net magnetic-exchange is antiferromagnetic. The different types of magnetic-exchange coupling constants (J values) considered for magnetic data analysis appear to adopt a variety of values depending on the specific geometric parameters associated with two interacting copper(II) centres. Notably, for 1 a good agreement between the J values obtained from DFT calculations at the B3LYP level of theory and from the experimental data is achieved.  相似文献   

20.
The catalytic ability of a dinuclear Zn2+ complex of 1,3-bis-N1-(1,5,9-triazacyclododecyl)propane (3) in promoting the cleavage of an RNA model, 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP, 1), and a DNA model, methyl p-nitrophenyl phosphate (MNPP, 4), was studied in methanol solution in the presence of added CH3O- at 25 degrees C. The di-Zn2+ complex (Zn2 :3), in the presence of 1 equiv of added methoxide, exhibits a second-order rate constant of (2.75 +/- 0.10) x 10(5) M(-1) s(-1) for the reaction with 1 at s(s)pH 9.5, this being 10(8)-fold larger than the k2 value for the CH3O- promoted reaction (kOCH3 = (2.56 +/- 0.16) x 10(-3) M(-1) s(-1)). The complex is also active toward the DNA model 4, exhibiting Michaelis-Menten kinetics with a KM and kmax of 0.37 +/- 0.07 mM and (4.1 +/- 0.3) x 10(-2) s(-1), respectively. Relative to the background reactions at s(s)pH 9.5, Zn2 :3 accelerates cleavage of each phosphate diester by a remarkable factor of 1012-fold. A kinetic scheme common to both substrates is discussed. The study shows that a simple model system comprising a dinuclear Zn2+ complex and a medium effect of the alcohol solvent achieves a catalytic reactivity that approaches enzymatic rates and is well beyond anything seen to date in water for the cleavage of these phosphate diesters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号