首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Concentrated solutions of reversibly assembling amphiphilic molecules often exhibit a variety of liquid-crystalline mesophases due to the asymmetry of their aggregates. For strongly elongated rod-like micelles flexibility may significantly influence the relative stability of these phases. This question is addressed for a simple model for a self-assembling system of monodisperse linear rod-like aggregates which are considered to be persistent flexible. Analogously to a recent calculation for a self-assembling system in which the rod-like aggregates are assumed to be perfectly rigid, persistent flexible aggregates may exhibit the same isotropic-nematic-columnar progression of phases. However, increasing the flexibility reduces the concentration range over which the nematic phase is stable. For sufficiently flexible aggregates the nematic phase is abandoned altogether and a direct isotropic-columnar transition occurs.  相似文献   

2.
Asymmetrical bent-core molecules based on 1,3,4-oxadiazole bent-core unit have been synthesised as a new design with a lateral methoxy group at outer phenyl ring of the molecule. These new asymmetrical bent-core molecules resemble hockey-stick shaped due to the presence of two different arms of different lengths. One arm of these molecules is elongated having two phenyl rings and possesses a 4-n-alkyloxy chain of a different number of carbon atoms (n = 4, 8, 12 and 18) and other arm is short and has one phenyl ring with fixed 4-n-octyloxy chain. The bent-core molecules possess a lateral polar methoxy group at the elongated arm of the molecule. These bent-core compounds exhibited fluorescence emission in the UV wavelength region (~377–386 nm) whereas in acetonitrile and dimethylformamide, solvent displays blue emission peak with a large stoke shift.The bent-core molecules with the number of carbon atoms (n = 4, 8 and 12) at the elongated arm exhibited monotropic nematic phase at low temperature, while the 4-n-octadecyloxy chain at the elongated arm displayed smectic A phase. Dielectric studies were performed in the nematic phase of the bent-core mesogens confirm the formation of the cybotactic cluster in the nematic mesophases.  相似文献   

3.
《Chemical physics letters》1986,123(5):359-364
The phase behaviour and structure of mixtures of a novel non-ionic discoidal amphiphile, 2,3.6,7,10,11-hexa-(1,4,7-trioxaoctyl)-triphenylene, and water have been investigated using deuterium NMR spectroscopy and X-ray diffraction. The feature of special interest is the occurrence of a nematic phase, intermediate to an isotropic micellar solution at higher temperatures and a columnar hexagonal phase at lower temperatures. This nematic phase exists over wide concentration (0.1 to 0.5 volume fraction of amphiphile) and temperature intervals. The molecules are stacked in columnar (rod-shaped) aggregates. In the isotropic micellar solution and nematic phase the length of the micelle is of the order of the centre-to-centre separation.  相似文献   

4.
We report alignment of anisotropic amphiphilic dye molecules within oblate and prolate anisotropic micelles and lamellae, the basic building blocks of surfactant-based lyotropic liquid crystals. Absorption and fluorescence transition dipole moments of these dye molecules orient either parallel or orthogonal to the liquid crystal director. This alignment enables three-dimensional visualization of director structures and defects in different lyotropic mesophases by means of fluorescence confocal polarizing microscopy and two-photon excitation fluorescence polarizing microscopy. The studied structures include nematic tactoids, Schlieren texture with disclinations in the calamitic nematic phase, oily streaks in the lamellar phase, developable domains in the columnar hexagonal phase, and various types of line defects in the discotic cholesteric phase. Orientational three-dimensional imaging of structures in the lyotropic cholesterics reveals large Burgers vector dislocations in cholesteric layering with singular disclinations in the dislocation cores that are not common for their thermotropic counterparts.  相似文献   

5.
Polarized-light microscopy, fluorescence microscopy, atomic force microscopy as well as absorption and fluorescence spectroscopy were used to characterize mesoscopic structures of both supramolecular H and J aggregates of 3,3'-disulfopropyl-5,5'-dichloro-9-methyl thiacarbocyanine dye in aqueous solution. Polarized-light microscopy visualizes in situ the mesoscopic morphology of the H and J aggregates and distinguishes between them by their own colors. The H aggregate having a fibrous structure showed negative birefringence, namely, the refractive index along the fiber short axis was higher than that of the long axis, so that pi-electron chromophores of the dye molecule are likely to orient along the short axis of the elongated fibers. The degree of birefringence of the H aggregate fiber was approximately -0.3. Investigations on the concentration dependence of the absorption spectra showed that the amount of J aggregates increased at the expense of a decrease in the amount of H aggregates. With respect to the J aggregates, a small dot morphology was observed at a relatively low dye concentration of 3.0 mM. With an increase of the dye concentration up to 10 mM, the morphology changed into mesoscopic fibers. In contrast, fluorescence microscopy for the fibrous J aggregates reveals that the constituent molecules are approximately aligned along the long axis of the fibers.  相似文献   

6.
The solution and liquid crystalline phases formed by dissolution of the dye Edicol Sunset Yellow (ESY) in water have been examined using optical microscopy, multinuclear NMR (1H, 2H, 13C, 23Na), and X-ray diffraction. From the solution 1H and 13C spectra (particularly 13C), it is clear that the tautomeric form present in all these phases is the hydrazone, NH, structure, not the usually given azo, OH, form. Two chromonic mesophases occur: a nematic (N) phase at approximately 30-40 wt % and a hexagonal (M) phase at approximately 40-45 wt %. X-ray diffraction data show that the aggregates in the mesophases are single molecule stacks, with a typical spacing of approximately 3.5 angstroms, as expected for these systems. The NMR quadrupole splittings (2H2O, 23Na) are similar to those observed for surfactant lyotropic mesophases, suggesting that there are no water molecules or counter ions that are tightly bound to the ESY aggregates. An unusual feature of the X-ray diffraction pattern of the mesophases is the occurrence of diffuse off-axis reflections at approximately 6.8 angstroms. It is proposed that these arise from a head-to-tail packing of the molecules within the stacks.  相似文献   

7.
We report the NMR study of the liquid crystalline phases of aqueous solutions of the dye benzopurpurin (BP-4B). Upon changing dye concentration, the system exhibits a phase transition between two ordered phases at about 3·5 wt %. The structure of these phases was not determined but the evidence suggests that they consist of columns or helically twisted columns of stacked dye molecules which are randomly oriented, similar to nematic phases.  相似文献   

8.
Counterions affect on the substructures formation in the case of the merocyanine dye, 1-methyl-4-[2-(4-hydroxyphenyl)ethenyl)]piridinium] hydrogensquarate both in gas and condense phase. Spectroscopically and structural elucidation of these aggregates have been performed, using solid-state conventional and linear-polarized IR-spectroscopy of oriented colloids as a nematic liquid crystal suspension, UV-vis spectroscopy, HPLC tandem ESI mass spectrometry, (1)H and (13)C NMR, TGV and DSC. Quantum chemical DFT calculations have been carried out as well. Experimental and theoretical data are compared with analogous ones of corresponding iodide salt of dye studied.  相似文献   

9.
《Liquid crystals》2000,27(8):1011-1016
Recently, we reported on a light-induced anchoring transition of an azobenzene nematic from planar to homeotropic alignment. In the proposed model of the transition, the changes in shape of the liquid crystal molecules and of their net dipole moment, due to the photoisomerization, were considered to play a vital role in the occurrence of the transition. In order to assess the validity of this model, a study of the anchoring behaviour of nematic guest-host liquid crystal mixtures containing two photochromic dyes, 3,3'- and 4,4'-substituted azobenzenes, was carried out. The dyes have very similar molecular structures to that of the azobenzene nematic previously studied, and their molecules, having a linear shape in the trans-form, maintained this shape after photoisomerization in the case of the 3,3'-azo dye, and changed it to bent in the case of the 4,4'-azo dye. The dyes possessed similar net dipole moments that increased substantially after photoisomerization, resulting in a preferential adsorption of their cis-isomers on the solid substrate. However, only the mixture containing the 4,4'-azo dye exhibited an anchoring transition from planar to homeotropic alignment upon illumination with unpolarized UV light, a behaviour in excellent agreement with the prediction of the model for the light-induced anchoring transition. An anchoring transition from random planar to uniform planar alignment was found to take place in the mixtures when linearly polarized UV light was used, requiring, however, a different exposure time for the two dyes.  相似文献   

10.
Liquid-crystalline perylene-3,4,9,10-tetra-(n-hexylester) forms characteristic dendritic or flower-like structures at room temperature when it is deposited on a hydrophilic glass substrate using the zone-casting technique. It was found that such unique structures were not possible to be created simply by recrystallisation of this dye from a liquid-crystalline columnar phase. On the basis of the observations using a confocal microscope and the study of wide angle X-ray scattering (WAXS) as well as the analysis of the absorption and fluorescence spectra, some conclusions, concerning the molecular organisation in the dendritic structure, are drawn. Based on the research, one can assume that the dendrites are formed by columnar molecular aggregates with the column axes parallel to the substrate. Such an organisation of the molecules can be interesting from the point of view of organic electronics.  相似文献   

11.
《Liquid crystals》1999,26(7):1039-1046
New low molar mass liquid crystalline vitrifying materials have been synthesized and tested for application in optical films. The molecules were based on spiro compounds derived from pentaerythritol and mesogenic groups derived from cyanobiphenylyl moieties. The resulting materials showed glass transition temperatures as high as 85 degrees C and nematic to isotropic phase transition temperatures up to 222 degrees C. Crystallization from the melt was strongly suppressed. Well-aligned, solid, birefringent layers were obtained from the materials by spincoating. Uniaxially oriented layers with an optic axis tilted with respect to the substrate were obtained by spincoating the liquid crystals on pretilt amplification layers. When an anisotropic dye was incorporated in the liquid crystals, polarizers with a tilted absorption axis were obtained. In addition, the compounds were found to be suitable as hosts for photo-induced reorientation of photo-isomerizable dyes.  相似文献   

12.
Optical microscopy, NMR and X-ray measurements are presented for four chromonic lyomesogens derived from 9-xanthone. The measurements provide details about the mesogen-water binary phase diagrams of the four compounds as well as quantitative information about the ordering and structural parameters of the mesophases. All four systems exhibit peritectic phase diagrams with a nematic (N) phase at low mesogen concentration and a hexagonal (H) phase at high concentration. The results are consistent with previously suggested models for chromonic lyomesophases in which columnar aggregates are formed by stacked mesogenic molecules. In the N phase these columns are parallel to the director but are otherwise randomly distributed in the bulk solvent, while in the H phase they form a two dimensional hexagonal array.  相似文献   

13.
New low molar mass liquid crystalline vitrifying materials have been synthesized and tested for application in optical films. The molecules were based on spiro compounds derived from pentaerythritol and mesogenic groups derived from cyanobiphenylyl moieties. The resulting materials showed glass transition temperatures as high as 85 degrees C and nematic to isotropic phase transition temperatures up to 222 degrees C. Crystallization from the melt was strongly suppressed. Well-aligned, solid, birefringent layers were obtained from the materials by spincoating. Uniaxially oriented layers with an optic axis tilted with respect to the substrate were obtained by spincoating the liquid crystals on pretilt amplification layers. When an anisotropic dye was incorporated in the liquid crystals, polarizers with a tilted absorption axis were obtained. In addition, the compounds were found to be suitable as hosts for photo-induced reorientation of photo-isomerizable dyes.  相似文献   

14.
Recently, we reported on a light-induced anchoring transition of an azobenzene nematic from planar to homeotropic alignment. In the proposed model of the transition, the changes in shape of the liquid crystal molecules and of their net dipole moment, due to the photoisomerization, were considered to play a vital role in the occurrence of the transition. In order to assess the validity of this model, a study of the anchoring behaviour of nematic guest-host liquid crystal mixtures containing two photochromic dyes, 3,3'- and 4,4'-substituted azobenzenes, was carried out. The dyes have very similar molecular structures to that of the azobenzene nematic previously studied, and their molecules, having a linear shape in the trans-form, maintained this shape after photoisomerization in the case of the 3,3'-azo dye, and changed it to bent in the case of the 4,4'-azo dye. The dyes possessed similar net dipole moments that increased substantially after photoisomerization, resulting in a preferential adsorption of their cis-isomers on the solid substrate. However, only the mixture containing the 4,4'-azo dye exhibited an anchoring transition from planar to homeotropic alignment upon illumination with unpolarized UV light, a behaviour in excellent agreement with the prediction of the model for the light-induced anchoring transition. An anchoring transition from random planar to uniform planar alignment was found to take place in the mixtures when linearly polarized UV light was used, requiring, however, a different exposure time for the two dyes.  相似文献   

15.
This letter reports a novel methodology for the synthesis of dye-containing nanocomposite thin films containing fluorescent rhodamine 6G (Rh6G) laser dye molecules. The nanocomposites are deposited in one step at room temperature in a downstream microwave plasma operating at low pressure and power. By controlling the plasma chemistry, it is possible to reduce the formation of dye dimers and higher aggregates that quench the fluorescence of the dye molecules. The films are intensely absorbent and fluorescent, insoluble in water, mechanically stable, and present good adhesion to the substrate. Besides, the method is compatible with the present silicon technology and therefore particularly interesting for the fabrication of integrated optoelectronic devices.  相似文献   

16.
Biaxiality in the nematic phase for a liquid crystalline tetrapode made up of organo-siloxanes mesogens is investigated using polarized infrared spectroscopy. An ordering of the minor director for the homeotropically aligned sample is found to depend on the amplitude of the in-plane electric field. On increasing the in-plane electric field, the minor director, lying initially along the rubbing direction, rotates to the direction of the applied field. The scalar order parameters of the second rank tensor are found to depend significantly on the strength of the electric field. A most significant increase is found in the nematic order parameter and in the parameter that characterizes the phase biaxiality.  相似文献   

17.
The phase diagram of the sodium dodecylsulphate/decanol/water system is studied by2H NMR spectroscopy in the range between the calamitic nematic (N+C) and discotic nematic (N-D) phases. In this narrow range a nematic biaxial phase (NBX) is observed. The phase transitions between the nematic phases are all of first order. The shape of the surfactant aggregates in the nematic phases varies with composition and temperature.  相似文献   

18.
About 50 different additives in one or more of three different nematic mixtures have been investigated to clarify the relationship between the chemical structure of the liquid crystal and the pretilt angle on a polyimide surface. The pretilts found for cells have been explained within our recently proposed population distribution model. For compounds with cyano-groups at one end, we find that the in-plane order is governed both by the surface-mesogen interaction and by the relative strength of the intermolecular interactions in the nematic phase. This strength is nearly linear in alkyl chain length for the compounds investigated. Changes in the strength due to variations in the core of the molecules can be calculated easily by using group contributions from the known Parachors. The in-plane order can be treated as a simple product of the contributions from the liquid crystal and from the polyimide. Different polar end groups will give different angles between the surface and the optical axis of the individual mesogens in the first monolayer. The cyano-group gives the highest angle and alkyl groups the lowest. For nitro-compounds the dimers formed are so strongly bound that they do not break up at the surface. Nitro-compounds will thus act as dialkyl compounds. For dialkyl compounds the pretilt angles are dominated by the difference between the chain lengths at the two ends of the molecule.  相似文献   

19.
Spontaneous entropic phase separation phenomena occur in a wide range of systems containing highly anisotropic colloidal particles. Among these are aqueous suspensions of negatively charged cellulose I nanocrystals produced by sulfuric acid hydrolysis of native cellulose, which phase separate into isotropic and chiral nematic liquid-crystalline phases. Phase separation of an isotropic phase from a completely ordered nanocrystal suspension may be induced by the addition of salts or nonadsorbing macromolecules. In previous work (Edgar, C. D.; Gray, D. G. Macromolecules 2002, 35, 7400-7406), an isotropic phase was found to form over a period of several days when blue dextran (a sulfonated triazine dye, Cibacron blue 3G-A, covalently attached to high-molecular-weight dextran chains) was added to initially ordered suspensions. Here we report work showing that the observed phase separation was associated with the charged dye molecules attached to the dextran. The Cibacron blue 3G-A dye attached to blue dextran was found to induce greater phase separation than free (unbound) dye; at increasing ionic strength, depletion attractions due to the blue dextran increasingly contribute to the phase separation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号