首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new electrodeposition condition to produce Zn-Al LDH films was developed using nitrate solutions containing Zn (2+) and Al (3+) ions. Deposition was achieved by reducing nitrate ions to generate hydroxide ions on the working electrode. This elevates the local pH on the working electrode, resulting in precipitation of Zn-Al LDH films. The effect of deposition potential, pH of the plating solution, and the Zn (2+) to Al (3+) ratio in the plating solution on the purity and crystallinity of the LDH films deposited was systematically studied using X-ray diffraction and energy dispersive spectroscopy (EDS). The optimum deposition potential to deposit pure and well-ordered Zn-Al LDH films was E = -1.65V versus a Ag/AgCl in 4 M KCl reference electrode at room temperature using a solution containing 12.5 mM Zn(NO 3) 2.6H 2O and 7.5 mM Al(NO 3) 3.9H 2O with pH adjusted to 3.8. The resulting film contained 39 atomic %Al (3+) ions replacing Zn (2+) ions, leading to a composition of Zn 0.61Al 0.39(OH) 2(NO 3) 0.39. xH 2O. Increasing or decreasing the aluminum concentration in the plating solution resulted in the formation of aluminum- or zinc-containing impurities, respectively, instead of varying aluminum content incorporated into the LDH phase. Choosing an optimum deposition potential was important to obtain LDH as a pure phase in the film. When the potential more negative than the optimum potential is used, zinc metal or zinc hydroxide was deposited as a side product, whereas making the potential less negative than the optimum potential resulted in the formation of zinc oxide as the major phase. The pH condition of the plating solution was also critical, as increasing pH destabilizes the formation of the LDH phase while decreasing pH promoted deposition of other impurities.  相似文献   

2.
Piezoelectric ZnO layers with high resistivity for surface acoustic wave applications were prepared on polycrystalline diamond/Si substrates with(Ill) orientation via metal-organic chemical vapour deposition.The characteristics of the films were optimized through different growth methods. The comparative study of the X-ray diffraction spectra and scanning electron microscopic images showed that the final-prepared ZnO films were dominantly c-axis oriented. Zn and O elements in the final prepared ZnO films were investigated through X-ray photoelectron spectroscopy. According to the statistical results, the n(Zn)/n(O) ratio is near 1. The Raman scattering was also performed in back scattering configuration. E2 mode was observed for the final films, which indicated that the better quality ZnO films had been obtained. The resistivity of the films was also enhanced via the modification of the growth methods.  相似文献   

3.
The synthesis and structural characterization of the first polymeric M-HDTMP organic-inorganic hybrids are described [M = Zn2+, Ca2+; HDTMP = hexamethylenediaminetetrakis(methylenephosphonate)]. The 3D crystal structure of the Zn2+ analogue [Zn(HDTMP) x H2O] is described. The Zn center is found in a distorted octahedral environment of phosphonate oxygens. There is a long Zn...O interaction (2.622 A) originating from a protonated -P-OH group. Synergistic combinations of Zn2+ and the tetraphosphonate are found to form films that protect against the corrosion of carbon steels.  相似文献   

4.
Several methods have been used for preparation of nickel and zinc ferrocyanides: precipitation, growth in a gel and a new method based on growth on a solid alkali-metal ferrocyanide. The granulometry, morphology, composition and structure of the compounds were studied. Only the last method of preparation gives products suitable for use as ion fixators in columns on a large scale. The nickel ferrocyanide compositions can be written as M(I)(2x)Ni(2-x)Fe(CN)(6).yH(2)O with M(I) Na, K, Cs, H and 0 < x < 0.8. They have a cubic lattice with a partial occupancy of iron sites. For zinc ferrocyanides, rhombohedral M(I)(2)Zn(3)[Fe(CN)(6)](2).xH(2)O, trigonal Zn(2)Fe(Cn)(6).2H(2)O and other cubic compounds were found. Products resulting from the fixation of caesium by ion-exchange were also studied.  相似文献   

5.
In this study, zinc oxide (ZnO) crystals were obtained by a simple wet chemical method using zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine as the starting materials in the presence of the water-soluble biopolymer carboxymethyl inulin (CMI). We investigated the effect of reaction temperature and CMI concentration on the morphology, surface area, particle size, and size distribution of zinc oxide. X-ray diffraction analysis showed the XRD patterns for all the samples were similar to that of ZnO with the wurtzite structure, irrespective of the geometric shape of the particle. The ZnO rod grows preferentially along the [001] direction in the absence of the CMI. The biopolymer affects the ZnO crystals in a concentration-dependent manner by altering the growth rate of the particles along the c-axis and a-axis. The vast majority of the crystals have a central grain boundary in the presence of CMI. The precipitate consisted of micrometer-sized hexagonally shaped bipyramidal ZnO crystals and nanocrystals.  相似文献   

6.
The tetraaquabis(methylisonicotinate)zinc(II) disaccharinate [hereafter, [Zn(mein)2(H2O)4]·(sac)2], complex has been synthesized and characterized by spectroscopic IR, EPR and X-ray diffraction technique. The octahedral Zn(II) ion, which rides on a crystallographic centre of symmetry, is coordinated by two monodentate mein ligands through the ring nitrogen and four aqua ligands to form discrete [Zn(mein)2(H2O)4] unit, which captures two saccharinate ions in up and down positions, each through intermolecular hydrogen bonds. The magnetic environments of Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 complex have been identified by electron paramagnetic resonance (EPR) technique. EPR spectra of Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 single crystals have been studied between 113 and 300 K in three mutually perpendicular planes. The calculated results of the Cu2+ doped [Zn(mein)2(H2O)4]·(sac)2 indicate that Cu2+ ion contains two different complexes and each complexes are located in different chemical environments and each environment contains two magnetically inequivalent Cu2+ sites in distinct orientations occupying substitutional positions in the lattice. The vibrational spectra of this compound were discussed in relation to other compounds containing methyl isonicotinate and saccharinate complexes. The assignments of the observed bands were discussed.  相似文献   

7.
The heptadentate Schiff base H(3)L can react with zinc acetate to form the discrete dinuclear complex Zn(2)L(OAc)(H(2)O), 1.H(2)O. The reaction of 1.H(2)O with NMe(4)OH.5H(2)O both in air and under an argon stream has been investigated. On one hand, this reaction in air yields the tetranuclear complex (Zn(2)L)(2)(CO(3))(H(2)O)(6), 2.5H(2)O, by spontaneous absorption of adventitious carbon dioxide. This process can be reverted in an acetic acid medium, whereas the treatment of 2.5H(2)O with methanoic acid yields crystals of [Zn(2)L(HCOO)].0.5MeCN.1.25MeOH.2H(2)O, 3.0.5MeCN.1.25MeOH.2H(2)O. On the other hand, the interaction under an argon atmosphere of 1.H(2)O with NMe(4)OH.5H(2)O in methanol allows the isolation of the dinuclear complex Zn(2)L(OMe)(H(2)O)(4), 4.4H(2)O. Recrystallisations of 1.H(2)O, 2.5H(2)O and 4.4H(2)O, in different solvents, yielded single crystals of 1.MeCN.2.5H(2)O, 2.4MeOH and 4.3MeOH.H(2)O, respectively. The crystal structure of 2.4MeOH can be understood as resulting from an unusual asymmetric tetranuclear self-assembly from two dinuclear units, and shows three different geometries around the four zinc atoms.  相似文献   

8.
Laser-ablated zinc and cadmium atoms were mixed uniformly with H2 and O2 in excess argon or neon and with O2 in pure hydrogen or deuterium during deposition at 8 or 4 K. UV irradiation excites metal atoms to insert into O2 producing OMO molecules (M = Zn, Cd), which react further with H2 to give the metal hydroxides M(OH)2 and HMOH. The M(OH)2 molecules were identified through O-H and M-O stretching modes with appropriate HD, D2, (16,18)O2, and (18)O2 isotopic shifts. The HMOH molecules were characterized by O-H, M-H, and M-O stretching modes and an M-O-H bending mode, which were particularly strong in pure H2/D2. Analogous Zn and Cd atom reactions with H2O2 in excess argon produced the same M(OH)2 absorptions. Density functional theory and MP2 calculations reproduce the IR spectra of these molecules. The bonding of Group 12 metal dihydroxides and comparison to Group 2 dihydroxides are discussed. Although the Group 12 dihydroxide O-H stretching frequencies are lower, calculated charges show that the Group 2 dihydroxide molecules are more ionic.  相似文献   

9.
High-throughput electrochemical methods have been developed for the investigation of Zn1-xCo(x)O films for photoelectrochemical hydrogen production from water. A library of 120 samples containing 27 different compositions (0 相似文献   

10.
The hydrothermal reactions of Na2MoO4 x 2H2O and 2,2':6',2"-terpyridine with appropriate salts of Fe(II), Cu(II), and Zn(II) yield a variety of mixed metal oxide phases. The Cu(II) system affords the molecular cluster [Cu(terpy)MoO4].3H2O (MOXI-40 x 3H2O), as well as a one-dimensional material [Cu(terpy)Mo2O7](MOXI-41) which is constructed from (Mo4O14)4- clusters linked through (Cu(terpy))2+ units. In constrast, the Zn(II) phase of stoichiometry identical to that of MOXI-41, [Zn(terpy)Mo2O7](MOXI-42), exhibits a one-dimensional structure characterized by a (Mo2O7)n2n- chain decorated with peripheral (Zn(terpy))2+ subunits. The iron species [(Fe(terpy))2Mo4O12](MOXI-43) is also one-dimensional but exhibits [(Fe(terpy))2(MoO4)2]2+ rings linked through (MoO4)2- tetrahedra. A persistent structural motif which appears in MOXI-40, MOXI-41, and MOXI-43 is the [(M(terpy))2(MoO4)2]n cluster with a cyclic )(M2Mo2O4) core. In general, the secondary metal sites M(II, III) are effective bridging groups between molybdate subunits of varying degrees of aggregation. Furthermore, the ligands passivate the bimetallic oxide from spatial extension in two or three dimensions and provide a routine entree into low-dimensional structural types of the molybdenum oxide family of materials.  相似文献   

11.
Multiple-deposited Pt overlayer modified Pt nanoparticle (MD-Pt overlayer/PtNPs) films were deliberately constructed on glassy carbon electrodes through alternately multiple underpotential deposition (UPD) of Ag followed redox replacement reaction by Pt (II) cations. The linear and regular growth of the films characterized by cyclic voltammetry was observed. Atomic force spectroscopy (AFM) provides the surface morphology of the nanostructured Pt films. Rotating disk electrode (RDE) voltammetry and rotating ring-disk electrode (RRDE) voltammetry demonstrate that the MD-Pt overlayer/PtNPs films can catalyze an almost four-electron reduction of O(2) to H(2)O in air-saturated 0.1 M H(2)SO(4). Thus-prepared Pt films behave as novel nanostructured electrocatalysts for dioxygen reduction and hydrogen evolution reaction (HER) with enhanced electrocatalytic activities, in terms of both reduction peak potential and peak current, when compared to that of the bulk polycrystalline Pt electrode. Additionally, it is noted that after multiple replacement cycles, the electrocatalytic activities improved remarkably, although the increased amount of Pt is very low in comparison to that of pre-modified PtNPs due to the intrinsic feature of the UPD-redox replacement technique. In other words, the electrocatalytic activities could be improved markedly without using very much Pt by the technique of tailoring the catalytic surface. These features may provide an interesting way to produce Pt catalysts with a reliable catalytic performance as well as a reduction in cost.  相似文献   

12.
The multilayer films of branched polyethyleneimine (BPEI) and poly(acrylic acid) (PAA) have been fabricated with the layer-by-layer (LbL) method. Two characteristic courses of the film thickness growth are observed, which are the initial exponential-like growth and the following linear growth. The variation of the COOH/COO- ratio indicates that the ionization degree of the polyelectrolyte molecules decreases at the initial stage of the multilayer buildup and then levels off after about eight bilayers. The as-prepared (BPEI/PAA)n films show a relatively smooth surface. However, great morphology changes occur after immersing these films in Cu2+ or Zn2+ solution. In the case of n > or =7, wavelike surface patterns are induced to form on the films. Both wavelength and fluctuation of these surface patterns show a systematical variation with an increase of the bilayer number. Moreover, thermal treatment can stabilize these patterns and enable the preservation of them after releasing the Cu2+ ions from the LbL films by acidic treatment. Interestingly, only Cu2+ and Zn2+ can induce the formation of such surface patterns, whereas Fe2+, Ca2+, Ag+, and Na+ cannot. This phenomenon may closely relate to the different natures of the metal ions.  相似文献   

13.
A novel approach based on sol–gel spin coating method to deposit Zn(O,S) thin film using thiourea(TU) as a sulfur source replacing CdS as buffer layer was developed and the influence of TU concentration on the properties of Zn(O,S) thin films and Cu(In,Ga)Se2(CIGS) solar cells were investigated in this paper. It was found by X-ray diffraction and X-ray photoelectron spectroscopy that sol–gel derived Zn(O,S) thin films were amorphous and composed of ZnS, ZnO as well as Zn(OH)2. The variation of the optical band gap as a function of the S/(S+O) ratio was determined by energy-dispersive spectroscopy and UV-VIS-NIR. The results indicated that the minimum value for band gap of approximate 3.72?eV was obtained when the S/(S+O)?=?0.44. Efficiency of up to 7.28% was achieved for a CIGS solar cell with Zn(O,S) buffer layer from 0.2M TU, which was attributed to the optimized conduction band offset (CBO) of +0.45?eV at the CIGS/Zn(O,S) interface.
Zn(O,S) thin films prepared in sol–gel route was used to replace traditional CdS buffer layer deposited by chemical bath deposition method in Cu(In,Ga)Se2 solar cells. The best efficiency was achieved for CIGS/Zn(O,S)/i-ZnO/ITO heterostructure solar cell with S/(S+O)?=?0.18, which was attributed to the optimized conduction band offset (CBO) of +0.45?eV at the CIGS/Zn(O,S) interface.
  相似文献   

14.
ZnO及其含锌混合氧化物薄膜的充放电性能研究   总被引:1,自引:0,他引:1  
从充放电性能、晶体结构等方面考察了包括粉末状的ZnO、脉冲激光沉积方法制备的ZnO薄膜和含锌混合氧化物薄膜的电化学性质.结果表明,ZnO粉末制备的电极的嵌入容量随退火温度的升高而增大,掺入其他氧化物可以明显改善ZnO薄膜的电化学性能,在Ar气氛中,基片温度为400℃时,沉积的靶子成分为Zn:B:P:Al=1:1:0.5:0.5(摩尔比)的含锌混合氧化物薄膜具有较高的可逆容量,且循环性能良好.  相似文献   

15.
Zinc complexes of a new symmetric dinucleating ligand, N,N'-Bis[2-carboxybenzomethyl]-N,N'-Bis[carboxymethyl]-1,3-diaminopropan-2-ol (H5ccdp) with mixed donating groups, have been studied in the solid state as well as in solution. In methanol, the reaction of stoichiometric and substoichiometric amounts of Zn(ClO4)2 x 6H2O and the ligand H5ccdp, in the presence of K2CO3 or Et3N, afforded a mononuclear zinc complex, [Zn(H2O)6][Zn(H2ccdp)(H2O)2]2 x 12H2O (1). The solid state structure of 1 contains two units of the zinc-ligand anion, [Zn(H2ccdp)(H2O)2]-, and one [Zn(H2O)6]2+ counter cation. The Zn(II) center of the anion is in a distorted octahedral geometry. However, in methanol, the reaction of ZnSO4 x 7H2O and the ligand Hsccdp in the presence of NaOH afforded a unique micro6-sulfato hexanuclear zinc complex, Na6[Zn6(ccdp)3(micro6-SO4)](OH) x 10.5H2O (2). The structure of 2 contains a [ZnII6(micro6-SO4)] core unit which is held together by three heptadentate bridging ligands, ccdp5-. Three of the Zn(II) centers are in highly distorted square pyramidal geometry, the other three Zn(II) centers are in a distorted octahedral geometry.  相似文献   

16.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

17.
A series of N-alkyldithiocarbamato complexes [M(S2CNHR)2] (M=Cd(II), Zn(II); R=C2H5, C4H9, C6H13, C12H25) have been synthesised and characterized. The decomposition of these complexes to sulfates has been investigated, and a mechanism proposed. The structures of [Zn(S2CNHHex)2], [Cd(SO4)2(NC5H5)4)]n and [Cd(SO4)2(NC5H5)2(H2O)2)]n have been determined by X-ray single crystal method. The cadmium complex [Cd(S2CNHC12H25)2] and zinc complex [Zn(S2CNHC6H13)2] were used as single-source precursors to synthesize CdS and ZnS nanoparticles, respectively. The synthesis of CdS nanoparticles was carried under various thermolysis conditions and changes in the shape of derived nanoparticles were studied by transmission electron microscope (TEM).  相似文献   

18.
Attempts to produce Zn analogues of the structural model complexes [M2(mu-O2CR)2(O2CR)2(mu-H2O)(tmen)2] (M = Ni, Co, Mn; R = CH(3), C(CH3)3, CF3) by the reaction of a series of zinc carboxylates with N,N,N',N'-tetramethylethylenediamine (tmen), resulted in the mononuclear complexes [Zn(OAc)(2)(tmen)] (1) and [Zn(crot)2(tmen)].(0.5)H2O (2) for R = CH3 and (CH)2CH3, respectively, and the dinuclear complexes [Zn(2)(mu-piv)(2)(piv)(2)(mu-H2O)(tmen)2] (3) and [Zn2(mu-OAc(F))2(OAc(F))2(mu-H2O)(tmen)2] (4) for R = C(CH3)3 and CF3, respectively. In contrast to the analogous imidazole series, i.e., [M2(mu-O2CR)2(O2CR)2(mu-H2O)(Im)4] (M = Ni, Co, Mn; R = CH3, C(CH3)3, CF3), zinc carboxylates react with imidazole to give only the mononuclear complexes [Zn(OAc)2(Im)2] (5), [Zn(crot)2(Im)2].H2O (6), [Zn(piv)2(Im)2].(0.5)H2O (7), and [Zn(OAc(F))2(Im)2] (8). Reaction of 1, 2, and 3 with either acetohydroxamic acid (AHA) or benzohydroxamic acid (BHA) gives the dinuclear complexes [Zn2(O2CR)3(R'A)(tmen)], where R'A = acetohydroxamate (AA) (9, 10, 11) or benzohydroxamate (BA) (13, 14, 15). In these complexes, the zinc atoms are bridged by a single hydroxamate and two carboxylates, with a capping tmen ligand on one zinc and a monodentate carboxylate bonded to the second zinc atom. This composition models closely the observed structure of the active site of the p-iodo-d-phenylalanine hydroxamic acid inhibited Aeromonas proteolyticaaminopeptidase enzyme. In contrast, 4 reacts with AHA to give [Zn2(OAc(F))3(tmen)2(AA)] (12) with an additional tmen ligand so that both Zn atoms are 6-coordinate, whereas reaction with BHA gives the trinuclear complex [Zn3(OAc(F))4(tmen)2(BA)2] (16). Reactions of 3 and 4 with glutarodihydroxamic acid (GluH2A2) produce the tetranuclear complexes [Zn4(piv)6(tmen)4(GluA2)] (18) and [Zn4(OAc(F))6(tmen)4(GluA2)] (19).  相似文献   

19.
Du ZY  Xu HB  Mao JG 《Inorganic chemistry》2006,45(16):6424-6430
Hydrothermal reactions of zinc(II) carbonate with m-sulfophenylphosphonic acid (m-HO3S-Ph-PO3H2) and 1,10-phenanthroline (phen) or 4,4'-bipyridine (bipy) lead to three novel zinc(II) sulfonate-phosphonates, namely, [Zn(phen)3]2[Zn4(m-O3S-Ph-PO3)4(phen)4].20H2O (1), [Zn6(m-O3S-Ph-PO3)4(phen)8].11H2O (2), and [Zn6(m-O3S-Ph-PO3)4(bipy)6(H2O)4].18H2O (3). Compound 1 contains a tetranuclear zinc(II) cluster anion in which four Zn(II) ions are bridged by two tetradentate and two bidentate phosphonate groups, and the four negative charges of the cluster are compensated by two [Zn(phen)3]2+ cations. Compound 2 features a hexanuclear zinc(II) cluster in which the same tetranuclear cluster of 1 is bridged with two additional Zn(II) ions. The structure of 3 features a porous 3D network based on hexanuclear zinc(II) units of [Zn6(m-O3S-Ph-PO3)4] interconnected by 4,4'-bipy ligands. The hexanuclear cluster in 3 is different from that in 2 in that all four phosphonate groups in 3 are tridentate bridging. Compounds 1, 2, and 3 exhibit broad blue fluorescent emission bands at 378, 409, and 381 nm, respectively.  相似文献   

20.
The optical band positions and EPR g factors g(i) (i = x, y, z) of Cu(H(2)O)(6)(2+) clusters in pure Tutton salts M(2)Cu(SO(4))(2)·6H(2)O (M = NH(4), Rb) are calculated from the complete diagonalization (of energy matrix) method based on the cluster approach. In the calculation, the superposition model with the structural data is used to obtain the crystal-field parameters. The calculated results are in reasonable agreement with the experimental values, suggesting that the complete diagonalization method and superposition model are effective in the studies of optical and EPR data. The g factors g(i) of Cu(H(2)O)(6)(2+) clusters in Cu(2+)-doped isomorphous diamagnetic Tutton salts M(2)Zn(SO(4))(2)·6H(2)O are also studied from the same method. It is found that the approximately tetragonally compressed Zn(H(2)O)(6)(2+) octahedra in the host crystals change to the approximately tetragonally elongated Cu(H(2)O)(6)(2+) octahedra in the impurity centers. The causes concerning the Jahn-Teller effect are discussed. It appears that in some cases the octahedral environment of an impurity M(I) in crystals differs from that of the replaced host ion, but is close to the one in the isomorphous pure crystals where M(I) is the host ion rather than the impurity ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号