首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of turbulence evolution and spectra within and just outside the core of a trailing vortex is performed. The vortex is generated by a vortex generator consisting of four blades positioned orthogonally to each other with the same angle of attack and placed in a low-speed wind tunnel. A grid is placed upstream of the vortex generator to produce free-stream turbulence, which wraps around and interacts with the columnar vortex. Instantaneous measurements of the three velocity components are obtained using a miniature four-sensor hot-wire probe. The study focuses on the distribution of turbulence energy and Reynolds stress among the different spectral components of the flow at different positions across the vortex core and different axial positions along the tunnel. The effect of background grid turbulence on the spectral energy distribution of the vortex is examined in comparison to the vortex alone.  相似文献   

2.
Flow visualization was used to study the effects of a vectored trailing edge jet on the leading edge vortex breakdown of a 65° delta wing. The experimental results indicated that there is little effect of the jet on the leading edge vortex breakdown when the angle of the vectored jet is less than 10°. With the increase of the vectored angle ß, the effect of the jet on the flow becomes stronger, i.e., the jet delays the leading edge vortex breakdown in the direction of the vectored jet, and accelerates breakdown of the other leading edge vortex. Moreover, the effect of the jet control tends to be weaker with the angle of attack.  相似文献   

3.
An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w?=?4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.  相似文献   

4.
The unsteady lift generated by turbulence at the trailing edge of an airfoil is a source of radiated sound. The objective of the present research was to measure the velocity field in the near wake region of an asymmetric beveled trailing edge in order to determine the flow mechanisms responsible for the generation of trailing edge noise. Two component velocity measurements were acquired using particle image velocimetry. The chord Reynolds number was 1.9 × 106. The data show velocity field realizations that were typical of a wake flow containing an asymmetric periodic vortex shedding. A phase average decomposition of the velocity field with respect to this shedding process was utilized to separate the large scale turbulent motions that occurred at the vortex shedding frequency (i.e., those responsible for the production of tonal noise) from the smaller scale turbulent motions, which were interpreted to be responsible for the production of broadband sound. The small scale turbulence was found to be dependent on the phase of the vortex shedding process implying a dependence of the broadband sound generated by the trailing edge on the phase of the vortex shedding process.  相似文献   

5.
刘明侯  T.L.Chan 《力学学报》2005,37(2):135-140
实验研究了狭缝射流撞击圆柱表面后壁面射流区的平均流动和湍流特 性. 考察了雷诺数 Re (6000-20000), 喷口到受撞表面距 离 Y/W (5-13), 喷口宽度 W (6.25mm, 9.38mm), 受撞表 面曲率(半圆柱体直径 D = 150mm)对流动和湍流结构的影响. 通过分析 X 热线 在壁面射流区的测量结果发现,在近壁区域,表面曲率、 Re_{w} , Y/W 和 S/W 等 参数对 \sqrt {\overline{u^2}} / U_m 的影响比对 \sqrt {\overline{v^2}} / U_m 强,并且切 应力 \overline {uv} /U_m^2 对表面曲率变化最敏感. 当喷口与受撞击表面之间的距 离 Y/W 在一定范围内增加时, 沿圆柱表面流动的流向和横向的湍流强度增强. 用平板射流和圆柱体表面壁面射流的数据进行比较,从而得到表面曲率对壁面射流特 性的影响. 结果表明,曲率对壁面射流的影响较强, 并随着 S/W 的增大而增强. 随着雷诺数的增大,壁面曲率的影响也有强化的趋势.  相似文献   

6.
The wake dynamics of an airfoil with a blunt and divergent trailing edge is investigated experimentally at relatively high Reynolds. The near wake topology is examined versus different levels of free stream turbulence FST and angles of attack, while the downstream wake evolution is characterized at various levels of FST. The FST is found to have a significant effect on the shapes of turbulence profiles and on the downstream location where the flow reaches its quasi-asymptotic behavior. Streamwise vortices (ribs) corresponding to spanwise variations of turbulence quantities are identified in the near wake region. Simultaneous multi-point hot-wire measurements indicate that their spatial arrangement is similar to Williamson’s (Ann Rev Fluid Mech 29:477–539, 1996) mode B laminar wake flow topology. The results suggest that the statistical spanwise distribution of ribs is independent of FST effects and angle of attack as long as the vortex shedding Strouhal number remains approximately similar.  相似文献   

7.
Large-scale organized vortical structures were studied experimentally in a free swirling jet of air experiencing vortex precession (PVC) at ambient conditions. Detailed measurements were performed in the region near the nozzle exit using phase-locked LDV and PIV, at a Reynolds number of Re ?? 24,400 and a swirl parameter S ?? 1.0. The investigation allowed reconstruction of the time-averaged flowfield, with the associated distribution of turbulent fluctuations, the phase-locked structure of the jet and the associated precessing vortex structure. An original joint analysis of power spectra and probability density functions of velocity data led to quantification of the PVC effect on turbulent fluctuations. This analysis showed that the PVC contribution can be properly separated from the background random turbulence, reproducing the results of phase-locked measurements. It is found that the background turbulence in the near field is substantially weaker if compared to the coherent fluctuations induced by vortex precession.  相似文献   

8.
近距离下射流冲击平板PIV实验研究   总被引:2,自引:1,他引:1  
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.   相似文献   

9.
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.  相似文献   

10.
Meander of a fin trailing vortex and the origin of its turbulence   总被引:2,自引:0,他引:2  
The low-frequency meander of a trailing vortex shed from a tapered fin installed on a wind tunnel wall has been studied using stereoscopic particle image velocimetry in the near-wake at Mach 0.8. Distributions of the instantaneous vortex position reveal that the meander amplitude increases with downstream distance and decreases with vortex strength, indicating meander is induced external to the vortex. Trends with downstream distance suggest meander begins on the fin surface, prior to vortex shedding. Mean vortex properties are unaltered when considered in the meandering reference frame, apparently because turbulent fluctuations in the vortex shape and strength dominate positional variations. Conversely, a large peak of artificial turbulent kinetic energy is found centered in the vortex core, which almost entirely disappears when corrected for meander, though some turbulence remains near the core radius. Turbulence originating at the wind tunnel wall was shown to contribute to vortex meander by energizing the incoming boundary layer using low-profile vortex generators and observing a substantial increase in the meander amplitude, while greater turbulent kinetic energy penetrates the vortex core. An explanatory mechanism has been hypothesized, in which the vortex initially forms at the apex of the swept leading edge of the fin where it is exposed to turbulent fluctuations within the wind tunnel wall boundary layer, introducing an instability into the incipient vortex core.  相似文献   

11.
An experimental investigation is performed to study the effect of the finned surfaces and surfaces with vortex generators on the local heat transfer coefficient between impinging circular air jet and flat plate. Reynolds number is varied between 7000 and 30,000 based on the nozzle exit condition and jet to plate spacing between 0.5 and 6 nozzle diameters. Thermal infrared imaging technique is used for the measurement of local temperature distribution on the flat plate. Fins used are in the form of cubes of 2 mm size spaced at a pitch of 5 mm on the target plate and hexagonal prism of side 2.04 mm and height of 2 mm spaced at a pitch of 7.5 mm. Vortex generators in the form of a equilateral triangle of side 4 mm are used. Effect of number of rows of vortex generators, radius of a row, number of vortex generators in a row and inclination angle (i.e., the angle between the plane of the target plate and the plane of the vortex generators) on Nusselt number is studied. It is observed that the heat transfer coefficient between the impinging jet and the target plate is sensitive to the shape of the fin. The increase in the heat transfer coefficient up to 77% depending on the shape of the fin, nozzle plate spacing and the Reynolds number is observed. The augmentation in the heat transfer for the surfaces vortex generators are higher than that of the finned surfaces. The heat transfer augmentation in case of vortex generator is as high as 110% for a single row of six vortex generators at a radius of 1 nozzle diameter as compared to the smooth surface at a given nozzle plate spacing of 1 nozzle diameter and a Reynolds number of 25,000 at extreme radial location.  相似文献   

12.
The objective of this paper is to examine the effect of bubbles on the turbulence levels of a water jet. Simultaneous measurements of the axial and radial velocity components were taken in a bubbly jet with a Laser Doppler Velocimeter (LDV) and then compared to the velocities of a single phase jet at the same liquid flow rate. Mean bubble diameters ranged from 0.6 to 2 mm and the void fractions were up to about 20%. The liquid Reynolds numbers were from 5,000 to 10,000 approximately. The measurements extended to from an axial distance of 4–12 cm. It was observed that bubbles did not affect significantly the average velocity profiles in the jet. However bubbles increased the turbulence intensities in the core of the jet near the jet exit. The increase in turbulence intensities was more pronounced at lower Reynolds numbers and at higher void fractions.  相似文献   

13.
采用大涡模拟方法对绕水翼云状空化的水动力特性和非定常流场结构进行研究. 基于实验结果对数值方法进行验证,分析空化与流场内部涡旋结构之间的相互作用以及对水翼动力特性的影响. 研究结果表明:大涡模拟方法可以准确模拟绕水翼流动的非定常过程. 在无空化条件下,升阻力系数存在斯特劳哈数St = 0.85 的主频波动,这是由水翼尾部涡旋结构的发展脱落引起的;在云状空化条件下,升阻力系数存在St = 0.34 的高能量密度低频波动,这是由大规模云状空泡团的发展和脱落引起的;云状空化阶段的升阻力系数在St = 0.5~1.5 的范围内都存在较高的波动,这是由于空化现象对水翼尾缘涡旋结构的发展和脱落产生影响,在不同发展阶段,空化现象不同程度地降低尾缘涡旋结构脱落频率.   相似文献   

14.
鲍欢欢  谷正气  谭鹏 《实验力学》2014,29(4):460-466
汽车尾部湍流场是汽车压差阻力的主要来源,在HD-2汽车模型风洞中,首先使用测力天平和测压系统,对横摆角工况下汽车模型的气动六分力和纵对称截面48个测点的表面压力进行了测量,然后利用PIV测量技术对模型在横摆角分别为0°、15°的尾部湍流场进行了测量,获得该模型尾流场的速度场、涡量场和雷诺应力流场信息,通过计算得出尾流场区域空间相关系数和湍流积分尺度。结果表明:在横摆角工况下,汽车模型尾部涡流的结构呈现向上发展的趋势;尾流场拖拽涡的范围和强度的增大导致了模型气动力出现较大的增加;湍流积分尺度的变化表明,尾部涡流区的分离噪声与涡流分离位置有关,在汽车尾部造型设计中,要尽量推迟尾部涡流的分离。  相似文献   

15.
基于LBM-LES方法,对中低雷诺数下的NACA0012翼型纯音噪声进行了直接计算,研究了不同迎角和雷诺数对纯音噪声的影响。计算结果表明,翼型的声源主要位于翼型的分离区和后缘处,在不同迎角和雷诺数下的声辐射特征均具有偶极子声场的特点;迎角的增大将引起较大的旋涡尺度和湍流强度,吸力面声源区域前移。声压级频谱分析表明,随着迎角的增大,纯音噪声逐渐消失,噪声谱最终呈现宽频特征;随着雷诺数的增大,后缘压力脉动增大。声压级频谱中,主频频率随着雷诺数的增大而增大,且符合Paterson公式的幂律关系。此外,声压级频谱特性随着雷诺数的增大表现出由离散特性向宽频特性转变的趋势。  相似文献   

16.
The effect of sound on the flow around plates with semicircular or square leading edges and square trailing edges located in a low turbulence open jet has been studied. In all circumstances the length of the leading edge separation bubbles associated with square leading edge plates was found to oscillate. When sound was applied to the flow around these plates, the leading edge shear layers reattached closer to the leading edge and the oscillations in bubble length occurred at the applied sound frequency, generating patches of concentrated vorticity in the boundary layers. These vorticity patches moved downstream near the plate surface and then beyond the trailing edge to form vortex cores in a street with a Strouhal number equal to the applied sound value. Sometimes these vortex streets are unstable and break down into streets with Strouhal numbers approaching those observed without sound. These effects of sound were not observed in the flow around plates with semicircular leading edges. Without sound, square leading edge plates of intermediate length did not shed regular vortex streets.  相似文献   

17.
Smoke–wire flow visualization is used to investigate the behavior of a round jet issuing from a straight tube and impinging on a convex surface. Video analysis of the impinging jet shows the initiation and growth of ring vortices in the jet shear layer and their interaction with the cylindrical surfaces. Effects of relative curvature, nozzle-to-surface distance, and Reynolds number on vortex initiation, vortex separation from the surface and vortex breakup are described. Examples of vortex merging are discussed.  相似文献   

18.
This paper presents a computational fluid–structure interaction analysis for a flexible plate in a free-stream to investigate the effects of flexibility and angle of attack on force generation. A Lattice Boltzmann Method with an immersed boundary technique using a direct forcing scheme model of the fluid is coupled to a finite element model with rectangular bending elements. We investigated the effects of various angles of attack of a flexible plate fixed at one of the end edges in a free-stream at a Reynolds number of 5000, which represents the wing flapping condition of insects and small birds in nature. The lift of the flexible plate is maintained at the large angle of attack, whereas the rigid plate shows the largest lift at angles of attack around 30–40° and then drastic reductions in the lift at the large angle of attack. If we consider the efficiency as the lift divided by the drag, the flexible plate shows better efficiency at angles of attack greater than 30° compared to the rigid plate. The better performance of the flexible plate at large angles of attack comes from the deformation of the plate, which produces an interaction between the trailing edge vortex and the short edge vortex. The horseshoe-shaped vortex produced by a large vortex interaction at the trailing edge side has an important role in increasing the lift, and the small projection area due to the deformation reduces the drag. Furthermore, we investigate the role of flexibility on the lift and the drag force of the rectangular plate in a free-stream as the Reynolds number increases. Whenever a large vortex interaction at the trailing edge side is shown, the efficiency of the rectangular plate is improved. Especially, the flexible plate shows better efficiency as the Reynolds number increases regardless of the angle of attack.  相似文献   

19.
The behavior of a non-buoyant circular water jet discharged from a contraction nozzle was experimentally investigated. In this experiment, the Reynolds number of the jet, based on the mean velocity results obtained by particle image velocimetry (PIV), ranged from 177 to 5,142. From the experimental results, we found that the cross-sectional profile of the axial velocity for a laminar flow near the nozzle did not show a top-hat distribution, whereas the profiles with Reynolds number higher than 437 were almost top-hat. The length of the zone of flow establishment (ZFE) was found to decrease with increasing Reynolds number. The measured centerline velocity decayed more rapidly and, consequently, approached the theoretical equation earlier near the nozzle as the Reynolds number increased. The decay constant for the centerline velocity of the turbulent cases was relatively lower than that discovered in theory. It is assumed that this probably resulted from the use of the contraction nozzle. Verifying the similarity of the lateral velocity profiles demonstrated that the Gaussian curve was properly approximated only for the turbulent jets and not for the laminar or transitional flows. The jet half width seldom grew for the laminar or transitional flows, whereas it grew with increasing axial distance for the turbulent flows. The spreading rates for the turbulent flows gradually decreased with increasing Reynolds number. The normalized turbulence intensity along the jet centerline increased more rapidly with the axial distance as the Reynolds number increased, and tended to the constant values proposed by previous investigators. The Reynolds shear stress levels were also found to increase as the Reynolds number increased for the turbulent jets.  相似文献   

20.
针对所设计的三角形涡流发生器开展用于翼型失速流动控制的风洞实验研究,重点讨论涡流发生器几何参数、方向角、安装位置及实验雷诺数等因素对翼型失速流动控制的影响。实验结果表明:涡流发生器作用下,在干净翼失速迎角后能够形成一个升力几乎不随迎角变化的相对稳定的高升力状态,抑制了失速流动的发生,与此同时阻力大幅下降;本文所设计的涡流发生器方向角过大时会削弱翼型失速流动控制的效果;同一涡流发生器作用下雷诺数过大其失速流动控制效果会急剧恶化,第一种涡流发生器控制翼型失速的雷诺数有效范围略宽于第二种涡流发生器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号