首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many natural terpenoid alkaloid conjugates show biological activity because their structures contain both sp3‐rich terpenoid scaffolds and nitrogen‐containing alkaloid scaffolds. However, their biosynthesis utilizes a limited set of compounds as sources of the terpenoid moiety. The production of terpenoid alkaloids containing various types of terpenoid moiety may provide useful, chemically diverse compound libraries for drug discovery. Herein, we report the construction of a library of terpenoid alkaloid‐like compounds based on Lewis‐acid‐catalyzed transannulation of humulene diepoxide and subsequent sequential olefin metathesis. Cheminformatic analysis quantitatively showed that the synthesized terpenoid alkaloid‐like compound library has a high level of three‐dimensional‐shape diversity. Extensive pharmacological screening of the library has led to the identification of promising compounds for the development of antihypolipidemic drugs. Therefore, the synthesis of terpenoid alkaloid‐like compound libraries based on humulene is well suited to drug discovery. Synthesis of terpenoid alkaloid‐like compounds based on several natural terpenoids is an effective strategy for producing chemically diverse libraries.  相似文献   

2.
Small molecule modulators of biological function can be discovered by the screening of compound libraries. However, it became apparent that some human disease related targets could not be addressed by the libraries commonly used which typically are comprised of large numbers of structurally similar compounds. The last decade has seen a paradigm shift in library construction, with particular emphasis now being placed on increasing a library's structural, and thus functional diversity, rather than only its size. Diversity-oriented synthesis (DOS) aims to generate such structural diversity efficiently. This tutorial review has been written to introduce the subject to a broad audience and recent achievements in both the preparation and the screening of structurally diverse compound collections against so-called 'undruggable' targets are highlighted.  相似文献   

3.
Recently, we developed a concept known as biology-oriented synthesis (BIOS), which targets the design and synthesis of small- to medium-sized compound libraries on the basis of genuine natural product templates to provide screening compounds with high biological relevance. We herein describe the parallel solution phase synthesis of two BIOS-based libraries starting from alpha-santonin (1). Modification of the sesquiterpene lactone 1 by introduction of a thiazole moiety followed by a Lewis-acid-mediated lactone opening yielded a first library of natural product analogues. An acid-mediated dienone-phenol rearrangement of 1 and a subsequent etherification/amidation sequence led to a second natural product-based library. After application of a fingerprint-based virtual screening on these compounds, the biological screening of 23 selected library members against 5-lipoxygenase resulted in the discovery of four potent novel inhibitors of this enzyme.  相似文献   

4.
An abundance of protein structures emerging from structural genomics and the Protein Structure Initiative (PSI) are not amenable to ready functional assignment because of a lack of sequence and structural homology to proteins of known function. We describe a high-throughput NMR methodology (FAST-NMR) to annotate the biological function of novel proteins through the structural and sequence analysis of protein-ligand interactions. This is based on basic tenets of biochemistry where proteins with similar functions will have similar active sites and exhibit similar ligand binding interactions, despite global differences in sequence and structure. Protein-ligand interactions are determined through a tiered NMR screen using a library composed of compounds with known biological activity. A rapid co-structure is determined by combining the experimental identification of the ligand binding site from NMR chemical shift perturbations with the protein-ligand docking program AutoDock. Our CPASS (Comparison of Protein Active Site Structures) software and database are then used to compare this active site with proteins of known function. The methodology is demonstrated using unannotated protein SAV1430 from Staphylococcus aureus.  相似文献   

5.
随着计算技术的发展和分子模拟软件的日趋成熟, 虚拟筛选已经在药物发现过程中发挥着越来越重要的作用. 在虚拟筛选过程中, 所使用化合物库的质量对先导化合物发现的成功率起着至关重要的作用. 本文通过对已知药物库、天然产物库、中药原植物化学成分库、筛选常用商业化合物库以及研究者所在实验室建立的化合物库的分析比较, 从化合物库的分子多样性、化学空间和分子骨架等多个方面提取并对比每一种化合物库的特征, 发现了已知药物库与中药原植物化学成分库的特征相似性, 揭示了中药原植物化学成分库作为筛选库的类药性优势, 并且深化了对几种筛选用化合物库特征的认识和理解.  相似文献   

6.
Identification of compounds from chemical libraries that bind to macromolecules by use of NMR spectroscopy has gained increasing importance during recent years. A simple methodology based on (19)F NMR spectroscopy for the screening of ligands that bind to proteins, which also provides qualitative information about relative binding strengths and the presence of multiple binding sites, is presented here. A library of fluorinated compounds was assembled and investigated for binding to the two bacterial chaperones PapD and FimC, and also to human serum albumin (HSA). It was found that library members which are bound to a target protein could be identified directly from line broadening and/or induced chemical shifts in a single, one-dimensional (19)F NMR spectrum. The results obtained for binding to PapD using (19)F NMR spectroscopy agreed well with independent studies based on surface plasmon resonance, providing support for the versatility and accuracy of the technique. When the library was titrated to a solution of PapD chemical shift and linewidth changes were observed with increasing ligand concentration, which indicated the presence of several binding sites on PapD and enabled the assessment of relative binding strengths for the different ligands. Screening by (19)F NMR spectroscopy should thus be a valuable addition to existing NMR techniques for evaluation of chemical libraries in bioorganic and medicinal chemistry.  相似文献   

7.
This review focuses on the possibilities and limits of nontarget screening of emerging contaminants, with emphasis on recent applications and developments in data evaluation and compound identification by liquid chromatography-high-resolution mass spectrometry (HRMS). The general workflow includes determination of the elemental composition from accurate mass, a further search for the molecular formula in compound libraries or general chemical databases, and a ranking of the proposed structures using further information, e.g., from mass spectrometry (MS) fragmentation and retention times. The success of nontarget screening is in some way limited to the preselection of relevant compounds from a large data set. Recently developed approaches show that statistical analysis in combination with suspect and nontarget screening are useful methods to preselect relevant compounds. Currently, the unequivocal identification of unknowns still requires information from an authentic standard which has to be measured or is already available in user-defined MS/MS reference databases or libraries containing HRMS spectral information and retention times. In this context, we discuss the advantages and future needs of publicly available MS and MS/MS reference databases and libraries which have mostly been created for the metabolomic field. A big step forward has been achieved with computer-based tools when no MS library or MS database entry is found for a compound. The numerous search results from a large chemical database can be condensed to only a few by in silico fragmentation. This has been demonstrated for selected compounds and metabolites in recent publications. Still, only very few compounds have been identified or tentatively identified in environmental samples by nontarget screening. The availability of comprehensive MS libraries with a focus on environmental contaminants would tremendously improve the situation.  相似文献   

8.
As part of our program to identify novel small molecules with interesting biological activity, we have designed and synthesized a library of end-capped dipeptides with an emphasis on compound diversity, complexity, and membrane permeability. An approximately 1500-member library was synthesized manually on large polystyrene beads using the mix-and-split method. The final compounds were cleaved into 384-well plates to generate individual stock solutions for input into high-throughput biological screens. Individual compounds were decoded using a combination of mass spectrometry and microflow NMR spectroscopy. In principle, this approach to deconvolution obviates the need for complicated binary encoding-decoding strategies for one-bead-one-compound libraries.  相似文献   

9.
构建了式根岛海绵的宏基因组文库,对其进行双层琼脂抗菌活性功能筛选,得到1株抗菌活性克隆pDC111. 以抗菌活性为指导,对pDC111的化学成分进行分析和分离,得到化合物1,并通过1D NMR(1H NMR和 13C NMR)及2D NMR(1H-1H COSY,HMQC和HMBC)结合HR-TOFMS数据,确定其结构为吲哚三聚体. 抗菌活性实验结果表明,化合物1在10 μg/paper(id=6 mm)时,对蜡状芽孢杆菌的抑菌圈达到12 mm. 本文利用功能宏基因组方法,从蕴藏大量不可培养微生物的海绵中寻找到活性物,并具有通过分子生物学技术获得其功能基因的潜能.  相似文献   

10.
The quality of combinatorial libraries determines the success of biological screening in drug discovery programs. In this paper, we evaluate and compare various methods for measuring identity, purity, and quantity (yield) of combinatorial libraries. Determination of quantitative purity reveals the true library quality and often indicates potential quality problems before full-scale library production. The relative purity can be determined for every member in a large library in a high-throughput mode, but must be cautiously interpreted. In particular, many impurities are not observable by relative purity measurements using detectors such as UV(214), UV(254), and evaporative light-scattering detection. These "invisible" impurities may constitute a significant portion of the sample weight. We found that TFA, plastic extracts, inorganic compounds, and resin washout are among these impurities. With compelling evidence, we reach a conclusion that purification is the only way to remove "invisible" impurities and improve the quantitative purity of any compound even though some compounds may have a high relative purity before purification.  相似文献   

11.
Several NMR screening techniques have been developed in recent years to aid in the identification of lead drug compounds. These NMR methods have traditionally been used for protein targets, and here we examine their applicability for an RNA target. We used the SHAPES compound library to test three different NMR screening methodologies: the saturation transfer difference (STD), the 2D trNOESY, and the WaterLOGSY experiments. We found that the WaterLOGSY experiment was the most sensitive method for our RNA target, the P4P6 domain of the Tetrahymena thermophila Group I intron. Using the WaterLOGSY experiment, we found that 23 of the 112 SHAPES compounds interact with P4P6. To identify which of these 23 hits bind through nonspecific interactions, we counterscreened with a linear duplex RNA control and identified one of the SHAPES compounds as interacting with P4P6 specifically. We thus demonstrated that the WaterLOGSY experiment in combination with the SHAPES compound library can be used to efficiently find RNA binding lead compounds.  相似文献   

12.
Approaches to the design of libraries for fragment screening are illustrated with reference to a 20 k generic fragment screening library and a 1.2 k generic NMR screening library. Tools and methods for library design that have been developed within AstraZeneca are described, including Foyfi fingerprints and the Flush program for neighborhood characterization. It will be shown how Flush and the BigPicker, which selects maximally diverse sets of compounds, are used to apply the Core and Layer method for library design. Approaches to partitioning libraries into cocktails are also described.  相似文献   

13.
As plants lack a circulatory system and adaptive immune system, they have evolved their own defense systems distinct from animals, in which each plant cell is capable of defending itself from pathogens. Plants induce a number of defense responses, which are triggered by a variety of molecules derived from pathogenic microorganisms, referred to as microbe-associated molecular patterns (MAMPs), including peptides, proteins, lipopolysaccharide, beta-glucan, chitin, and ergosterol. The interaction between plants and chemicals in the context of plant defense represents a "natural" and simple model for chemogenomics, at the intersection between chemical and biological diversities. For protection of crop plants from diseases, it has been shown to be effective to stimulate the plant immunity by chemical compounds, the so-called "plant defense activators". Combinatorial chemistry techniques can be applied to the search for novel plant defense activators, but it is essential to establish an efficient and reliable screening system suitable for library screening. For studies of the plant immune system, it is difficult to use isolated proteins as biological targets because the receptors for MAMP recognition are largely unknown and even the receptors identified so far are transmembrane proteins. Therefore, screening for novel peptides acting on MAMP receptors from combinatorial libraries must rely on a solution-phase assay using cells as the biological targets. In this review, we introduce the cell-based lawn format assay for identification of peptides acting as plant defense activators from combinatorial peptide libraries. The requirements and limitations in constructing the screening system using combinatorial libraries in the studies of plant sciences are also discussed.  相似文献   

14.
In the continuing effort to find small molecules that alter protein function and ultimately might lead to new drugs, combinatorial chemistry has emerged as a very powerful tool. Contrary to original expectations that large libraries would result in the discovery of many hit and lead structures, it has been recognized that the biological relevance, design, and diversity of the library are more important. As the universe of conceivable compounds is almost infinite, the question arises: where is a biologically validated starting point from which to build a combinatorial library? Nature itself might provide an answer: natural products have been evolved to bind to proteins. Recent results in structural biology and bioinformatics indicate that the number of distinct protein families and folds is fairly limited. Often the same structural domain is used by many proteins in a more or less modified form created by divergent evolution. Recent progress in solid-phase organic synthesis has enabled the synthesis of combinatorial libraries based on the structure of complex natural products. It can be envisioned that natural-product-based combinatorial synthesis may permit hit or lead compounds to be found with enhanced probability and quality.  相似文献   

15.
Early results from screening combinatorial libraries have been disappointing with libraries either failing to deliver the improved hit rates that were expected or resulting in hits with characteristics that make them undesirable as lead compounds. Consequently, the focus in library design has shifted toward designing libraries that are optimized on multiple properties simultaneously, for example, diversity and "druglike" physicochemical properties. Here we describe the program MoSELECT that is based on a multiobjective genetic algorithm and which is able to suggest a family of solutions to multiobjective library design where all the solutions are equally valid and each represents a different compromise between the objectives. MoSELECT also allows the relationships between the different objectives to be explored with competing objectives easily identified. The library designer can then make an informed choice on which solution(s) to explore. Various performance characteristics of MoSELECT are reported based on a number of different combinatorial libraries.  相似文献   

16.
One of the key elements in the drug discovery process is the use of automation to synthesize libraries of compounds for biological screening. The "split-and-mix" approaches in combinatorial chemistry have been recognized as extremely powerful techniques to access large numbers of compounds, while requiring only few reaction steps. However, the need for effective encoding/deconvolution strategies and demands for larger amounts of compounds have somewhat limited the use of these techniques in the pharmaceutical industry. In this paper, we describe a concept of directed sort and combine synthesis with spatially arranged arrays of macroscopic supports. Such a concept attempts to balance the number of reaction steps, the confidence in compound identity, and the quantity of synthesized compounds. Using three-dimensional arrays of frames each containing a two-dimensional array of macroscopic solid supports, we have conceptualized and developed a modular semiautomated system with a capacity of up to 100 000 compounds per batch. Modularity of this system enables flexibility either to produce large diverse combinatorial libraries or to synthesize more focused smaller libraries, both as single compounds in 12-15 micromol quantities. This method using sortable and spatially addressed arrays is exemplified by the synthesis of a 15 360 compound library.  相似文献   

17.
Medicinal chemists have traditionally realized assessments of chemical diversity and subsequent compound acquisition, although a recent study suggests that experts are usually inconsistent in reviewing large data sets. To analyze the scaffold diversity of commercially available screening collections, we have developed a general workflow aimed at (1) identifying druglike compounds, (2) clustering them by maximum common substructures (scaffolds), (3) measuring the scaffold diversity encoded by each screening collection independently of its size, and finally (4) merging all common substructures in a nonredundant scaffold library that can easily be browsed by structural and topological queries. Starting from 2.4 million compounds out of 12 commercial sources, four categories of libraries could be identified: large- and medium-sized combinatorial libraries (low scaffold diversity), diverse libraries (medium diversity, medium size), and highly diverse libraries (high diversity, low size). The chemical space covered by the scaffold library can be searched to prioritize scaffold-focused libraries.  相似文献   

18.
The topologically segregated bilayer-bead concept has been applied to encoded "one-bead one-compound"(OBOC) combinatorial libraries to avoid the interference of coding tags with biological screening. In this paper, we report on the development of a novel partial Alloc-deprotection (PAD) approach and the use of this approach to establish a new ladder-synthesis method for OBOC combinatorial libraries to further exploit the concept. In the PAD approach, Alloc-protected beads are partially deprotected, sequentially layer by layer, starting from the outer layer toward the bead interior. The degree of deprotection (or thickness of each layer) is controlled by the time of exposure to the deprotecting agent, palladium. By repetitive use of the PAD approach, a small portion of Alloc-protected N termini in the bead interior is liberated in each synthetic cycle for generation of an additional ladder member such that each library bead will carry a full-length library compound on the bead surface and a series of truncated ladder members in the bead interior. For the libraries containing isobaric residues, a simple encoding strategy is introduced in the ladder-synthesis method so that the isobaric residues can be differentiated by the coding tags. One advantage of this encoding strategy is that the coding tags are confined together with the truncated ladder members in the bead interior, thus maintaining the arrangement that only the library compounds are displayed on the bead surface. The PAD approach of forming multiple concentric functional layers inside a bead is simple, reliable, and may have other applications in addition to OBOC combinatorial library bead encoding, such as the development of novel optically encoded beads for multiplex immunodiagnostics or even information recording.  相似文献   

19.
Traditional Chinese medicine (TCM) has been used for more than 4000 years. By comparison with large combinatorial chemistry libraries and natural products of the West for high-throughput screening (HTS) of new drugs discovery, an advantage of TCM is that the preparation has clear efficacies on the therapy of some diseases. Although the effective components are not clear, the clear efficacies of TCM have been identified for long time practice, Therefore, TCMs should be valuable lead compound libraries with a definite therapy efficacy from the viewpoint of HTS. Nevertheless, current HTS technologies are not easily adapted to investigate TCMs because they are designed for screening a relatively pure known chemical at a known concentration. In contrast, TCMs are mixtures of unknown compounds in unknown concentrations that may differ markedly between samples from different plants. This article reviews the current and future researches on the enzyme inhibitors screening from TCM.  相似文献   

20.
We describe a novel method for ligand-based virtual screening, based on utilizing Self-Organizing Maps (SOM) as a novelty detection device. Novelty detection (or one-class classification) refers to the attempt of identifying patterns that do not belong to the space covered by a given data set. In ligand-based virtual screening, chemical structures perceived as novel lie outside the known activity space and can therefore be discarded from further investigation. In this context, the concept of "novel structure" refers to a compound, which is unlikely to share the activity of the query structures. Compounds not perceived as "novel" are suspected to share the activity of the query structures. Nowadays, various databases contain active structures but access to compounds which have been found to be inactive in a biological assay is limited. This work addresses this problem via novelty detection, which does not require proven inactive compounds. The structures are described by spatial autocorrelation functions weighted by atomic physicochemical properties. Different methods for selecting a subset of targets from a larger set are discussed. A comparison with similarity search based on Daylight fingerprints followed by data fusion is presented. The two methods complement each other to a large extent. In a retrospective screening of the WOMBAT database novelty detection with SOM gave enrichment factors between 105 and 462-an improvement over the similarity search based on Daylight fingerprints between 25% and 100%, when the 100 top ranked structures were considered. Novelty detection with SOM is applicable (1) to improve the retrieval of potentially active compounds also in concert with other virtual screening methods; (2) as a library design tool for discarding a large number of compounds, which are unlikely to possess a given biological activity; and (3) for selecting a small number of potentially active compounds from a large data set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号