首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Oana M. Martin 《Tetrahedron》2007,63(25):5539-5547
A new series of highly fluorinated calix[4]arene-based amphiphilic molecules was designed and synthesized. Using the calix[4]arene scaffold, four perfluorinated hyper-hydrophobic groups and four water solubilizing chains were introduced in the same molecule and also segregated in space following the scaffold directionality. Upon solubilization in aqueous solutions, these amphiphilic molecules form microscopic fluorous domains that drive the formation of various self-assembly patterns. We found that the self-assembly of these semifluorinated calix[4]arenes is dependent on external stimuli, such as changes in the polarity of the solvent or pH. As a consequence, by changing the pH of the solutions, it is possible to shift the aggregation pattern of these molecules, by a regular change either in the shape or in the size of the initially formed ordered aggregates. These are examples of the variety of structures and possibilities in nano-engineering offered by fluorous-phase driven molecular recognition.  相似文献   

2.
Mesoporous carbons containing cobalt nanoparticles are synthesized by tri-or quad-constituent self assembly of Pluronic F127, phenol-formaldehyde oligomer (resol), cobalt acetylacetonate (acac), and optionally tetraethyl orthosilicate (TEOS, optional). Upon pyrolysis in N2 atmosphere, the resol provides sufficient carbon yield to maintain the ordered structure, while decomposition of the Co(acac) yields cobalt nanoparticles. To provide increased surface area, the dispersed silicate from condensation of TEOS can be etched after carbonization to yield micropores, Without silica templated micropores, the surface area decreases as the cobalt content increases, but there is a concurrent increase in the volume-average pore diameter (BHJ) and a dramatic increase in the adsorption capacity of methylene green with the equilibrium adsorption capacity from 2 to 90 mg/g with increasing Co content. Moreover, the surface area and pore size of mesoporous composites can be dramatically increased by addition of TEOS and subsequent etching. These composites exhibit extremely high adsorption capacity up to 1151 mg/g, which also increases with increases in the Co content. Additionally, the inclusion of cobalt nanoparticles provides magnetic separation from aqueous suspension. The in situ synthesis of the Co nanoparticles yields to a carbon shell that can partially protect the Co from leaching in acidic media; after 96 h in 2 M HCl, the powders remain magnetic.  相似文献   

3.
Semifluorinated alkanes (C(n)F(2n+1)C(m)H(2m+1)), short FnHm display local phase separation of mutually incompatible hydrocarbon and fluorocarbon chain moieties, which has been utilized as a structure-forming motif in supramolecular architectures. The packing of semifluorinated alkanes, nominally based on dodecyl subunits, such as perfluoro(dodecyl)dodecane (F12H12) and perfluoro(dodecyl)eicosane (F12H20), as well as a core extended analogue, 1,4-dibromo-2-((perfluoroundecyl)methoxy)-5-(dodecyloxy)benzene) (F11H1-core-H12), was studied at the air/water interface. Langmuir monolayers were investigated by means of neutron reflectivity directly at the air/water interface and scanning force microscopy after transfer to silicon wafers. Narrowly disperse surface micelles formed in all three cases; however, they were found to bear different morphologies with respect to molecular orientation and assembly dimensionality, which gives rise to different hierarchical aggregate topologies. For F12H12, micelles of ca. 30 nm in diameter, composed of several circular or "spherical cap" substructures, were observed and a monolayer model with the fluorocarbon block oriented toward air is proposed. F12H20 molecules formed larger (ca. 50 nm diameter) hexagonally shaped surface micelles that were hexagonally, densely packed, besides more elongated but tightly interlocked wormlike structures. Conversely, F11H1-core-H12 films organized into linear rows of elongated surface micelles with comparable width, but an average length of ca. 400 nm, apparently formed by antiparallel molecular packing.  相似文献   

4.
Self-assembly is one of the most important concepts of the 21st century. Strikingly, despite the rational design of molecules for biological and pharmaceutical applications is rather well established, only few are the attempts to formally refine predictions of self-assembly in material science. In the present tutorial review, we encompass some of the most significant efforts towards the systematic study of (thermodynamically stable) self-assembly. We discuss experimental and computer-simulated self-assembly events in hard-matter, soft-matter and higher symmetry architectures under the common framework of partition functions. In this framework, we endeavor to correlate state-of-the-art chemical design, programming and/or engineering of reversible (thermal and chemical equilibrium) self-assembly with knowledge of the underlying partition function landscape in a step towards quantitative predictions and ab initio molecular design.  相似文献   

5.
Gramicidin A, a polypeptide antibiotic forming transmembrane ion channels, has been incorporated into a Langmuir monolayer formed by a semifluorinated alkane (SFA). In this work, partially fluorinated tetracosane, perfluorohexyloctadecane (F6H18), has been applied, aiming at finding a suitable matrix for gramicidin A to be transferred onto solid support for a biosensor design. For this purpose, the physiological conditions were of special interest (mixed monolayers containing low gramicidin proportion and the surface pressure of 30 mN/m). Mixed monolayers of gramicidin and SFA were found to be miscible within the whole range of mole fractions. A very significant increase of the stability of SFA monolayer has been found in the presence of gramicidin, even at such a low proportion as X(gramicidin) = 0.1, which is reflected in a 3.5-fold increase of the collapse pressure value of mixed monolayer as compared to the film from pure SFA. This interesting phenomenon has been interpreted as being due to the existence of a strong dipole-dipole interaction between both film-forming molecules. Opposite sign of the measured electric surface potential for gramicidin and SFA, resulting from different directions of the dipole moment vectors in both film molecules, implies that the ordered, antiparallel orientation of the dipole moments in the mixed gramicidin/SFA system can be responsible for its extremely high stability.  相似文献   

6.
The 3D phase formation was monitored in relaxation experiments of the collapsed Langmuir monolayers of selected partially fluorinated tetracosanes, that is, F6H18, F8H16, and F10H14. To carry out these experiments, the classical method of surface manometry, such as pi-A isotherms registration and the molecular area-time dependencies, under quasi-static monitoring conditions were applied. The evolution of 3D structures at the water/air interface was observed with Brewster angle microscopy (BAM). The obtained data were interpreted according to the nucleation-growth-collision theory model. It occurred that, even though the investigated chemicals are not classical surfactants and do not possess any polar headgroup, their evolution from a 2D monolayer to 3D structures can be successfully modeled with the above-mentioned theory. The influence of the subphase temperature on the nucleation process is also discussed.  相似文献   

7.
Several new semifluorinated compounds and polymers modified with these groups were synthesized and investigated. The polymer supports for these mesomorphic groups were styrene-diene block copolymers in which the semifluorinated groups were attached to a hydroxy-modified diene block. The characteristics of the smectic phase formed and its effect on the self-ordering behavior of the block copolymers were examined.  相似文献   

8.
The self-assembly of matter is manifested throughout the hierarchy of the universe in a myriad of modes, both biotic and abiotic. It is not only an area of deep interest as a fundamental prerequisite to life, but it is now emerging as a strategy to many new unanticipated synthetic architectures, unique properties and commercial applications. In this issue, 11 authors review recent advances in each of these realms. Considering the vastness of the subject, we have chosen to focus on selected highlights in three general areas, namely: (i) synthesis; (ii) dynamics/characterization/external parameters affecting assembly; and (iii) theoretical/biological perspectives. Current Opinion in Colloid & Interface Science 1999, 4:3–5 Electronic identifier: 1359-0294-004-00003 ©1999 Elsevier Science Ltd. All rights reserved. ISSN 1359-0294  相似文献   

9.
Nanobelt structures have been fabricated for an n-type semiconductor molecule, N,N'-di(propoxyethyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI). The short alkyloxy side chain not only affords effective pi-pi stacking in polar solvents for self-assembling but also provides sufficient solubility in nonpolar solvents for solution processing. As revealed by both AFM and electron microscopies, the nanobelts have an approximately rectangular cross section, with a typical thickness of about 100 nm and a width in the range of 300-500 nm. The length of the nanobelts ranges from 10 to a few tens of micrometers. The highly organized molecular packing (uniaxial crystalline phase) has been deduced from the measurement of electron diffraction and polarized microscopy imaging. The detected optical axis is consistent with the one-dimensional stacking of the molecules.  相似文献   

10.
A model for aggregates of quadrupolar (DAD or ADA) molecules is presented that relaxes the dipolar approximation for intermolecular electrostatic interactions. New effects, including the appearance of bound biexcitons in clusters of nonpolar molecules, are predicted with interesting and unforeseen consequences on the material properties. Specifically, we show that the large two-photon absorption cross-section, typical of quadrupolar chromophores, can be further amplified by orders of magnitude as a result of aggregation.  相似文献   

11.
Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.  相似文献   

12.
Evaporation-induced pattern formation has attracted considerable attention as a simple yet versatile method for generating self-assembled structures that have broad applications from photonic devices to biomacromolecular recognition. Previous study of evaporative self-assembly has mainly focused on single nonvolatile component systems, and the driving mechanisms have been extensively investigated. In contrast, pattern formation from evaporating multicomponent systems, despite its wide existence in nature and numerous engineering applications, has been rarely explored. In this work, we examine a DNA-colloid binary suspension as a model system to understand the evaporation-induced interfacial hydrodynamics and self-assembled morphology in multicomponent systems involving complex competing intermolecular and interfacial interactions. Direct microscopic observations show that the composition of the binary system plays a critical role in the multiple-ring formation upon evaporation: (1) suspensions with high DNA concentrations and low colloidal concentrations favor the formation of the multiple-ring pattern; (2) the size of colloidal particles added into DNA aqueous droplets can significantly disrupt smooth multiple rings to form rippled rings and curtain-like periodic patterns with a curious spoke-like structure as the size of colloidal particles increases; and (3) the enhancement of DNA-colloid interaction by oppositely charged colloidal particles results in considerably high irregularity of DNA stain ring spacing. We examine the disruption of the multiring morphology under varied conditions and attribute it to local hydrodynamics governed by colloid aggregation and sedimentation. Our results demonstrate the feasibility of fabricating periodic self-assembled hybrid structures via one-step evaporation of droplets consisting of multiple components.  相似文献   

13.
14.
15.
The plasma desorption of hydrogen loss fragment ions from frozen films of several classes of aliphatic volatile hydrocarbons was investigated with 252Cf plasma desorption mass spectrometry. A time-of-flight instrument suitable for the reproducible sampling and analysis of volatile hydrocarbons in the solid state was designed for this study. Representative compounds from the n-alkanes and cycloalkanes were analyzed. For all the compounds studied, radical molecular ions. M+., and hydrogen loss fragment ions, [M ? mH]+ with m varying from 1 to 10, were produced. The length of the alkane chain, the size of the alkane rings and the stability of the resulting H-loss ions affected the number and abundance of these ions. Smaller molecules underwent proportionally more hydrogen loss than larger molecules of the same class.  相似文献   

16.
Mixtures of isomers are available from the reaction of benzene hexathiol with three equivalents of p-tolualdehyde and kinetic traps avoided under the reported catalytic conditions, establishing tris(thioacetals) as potential building blocks for covalently self-assembled complex structures.  相似文献   

17.
Supramolecular self-assembly using weak interactions under quasi-equilibrium conditions has provided easy access to very complex but often quite fragile molecules. We now show how a labile structure obtained from reversible transition-metal-directed self-assembly of rods and connectors serves as a template that can be converted into a sturdy structure of identical topology and similar geometry. The process consists of Cu(I)-catalyzed replacement of all rods or connectors terminated with pyridines for analogues terminated with ethynyls, converting dative N→Pt(+) bonds into covalent C-Pt bonds. The procedure combines the facility and high yield of reversible self-assembly with the robustness of covalent synthesis.  相似文献   

18.
19.
Hu Y  Mei T  Guo J  White T 《Inorganic chemistry》2007,46(26):11031-11035
ZnO nanocrystals, nanorods, and tablets were prepared at 110, 140, and 180 degrees C in a water-ethanol system. Nanorods (~2 x 40 nm) arranged in serpentine morphologies formed by the oriented coalescence of anhedral ZnO nanocrystals (~3.5 nm diameter), while tabular ZnO grew by [1210] textural attachment of the nanorods. The development of these crystal habits is believed to proceed via a dissolution and growth mechanism mediated by a transient amorphous phase. Materials synthesized at intermediate temperatures (125 and 160 degrees C) possessed microstructures containing mixed crystal forms in the expected orientation relationship. Photoluminescent spectra of the nanocrystals and nanorods showed blue shifts of 0.16 and 0.13 eV with respect to the bulk ZnO band gap (3.26 eV) due to quantum confinement, with the narrow emission peaks typical of particles possessing uniform size and shape. The larger tablets displayed a less energetic emission (3.10 eV) ascribed to exciton-exciton collisions.  相似文献   

20.
H Jin  W Huang  X Zhu  Y Zhou  D Yan 《Chemical Society reviews》2012,41(18):5986-5997
Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号