首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have measured absolute integral cross sections for low-energy collisions of atoms and molecules with neutral sodium clusters over a wide cluster size range (n=2–40). The cross sections are exceptionally large, reaching values of thousands of square angstroms. Consequently, the scattering involves long-range interactions. The van der Waals force, acting either alone (Nan+N2) or in concert with the inelastic charge-transfer “harpooning” channel (Nan+Cl2, Nan+O2) can describe the measurements. Using interaction parameters taken from spectroscopic studies of alkali clusters, we find very good agreement with the data. This provides a point of contact between beam scattering experiments and studies of cluster electromagnetic response properties.  相似文献   

2.
The structure, energetics, and physical properties, including rotational constants, characteristic vibrational temperatures, dipole moment, static polarizability, HOMO-LUMO gap, formation enthalpy and collision diameter of different isomeric forms of atomic Al n H m and B n H m clusters with n = 1..4 and all feasible m numbers are studied within the density functional theory framework. The search of isomer structures has been accomplished using multistep hierarchical algorithm. Temperature dependences of thermodynamic functions (enthalpy, entropy and specific heat capacity) have been calculated both for the individual isomers and for the ensemble of isomers with equilibrium composition for each class of clusters, taking into account the anharmonicity of cluster vibrations and the contribution of excited electronic states. The prospects of the application of small atomic Al n H m and B n H m clusters as the components of energetic and hydrogen storage materials are also discussed.  相似文献   

3.
4.
A variety of novel CnAl12 core–shell nanoclusters have been investigated using density functional calculations. A series of Cn cores (n=1–4) have been encapsulated by icosahedral Al12, with characteristic physical properties (energetics and stabilities, ionisation energies, electron affinities) calculated for each cluster. Other isomers, with the Cn moiety bound externally to the Al12 shell, have also been studied. For both series, a peak in stability was found for n(C)=2, a characteristic that appears to be inextricably linked with the relaxation of the constituent parts upon dissociation. Analysis of trends for ionisation energies and electron affinities includes evaluation of contributions from the carbon and aluminium components, which highlights the effects of composition and morphology on cluster properties.  相似文献   

5.
The electronic structures of small Al n ,n=5, 9, 13, clusters with bulk geometry are studied using the ab initio Hartree-Fock-LCAO method. The cluster ground states have always multiplicity higher than the lowest possible value. However, the energy difference between ground and lowest low spin state decreases with increasing cluster size. The energy range of the Al n cluster valence levels is comparable with the width of the occupied part of the 3sp band in bulk Al. The different binding mechanisms that arise when a CO molecule interacts with Al n clusters in different coordination sites are analyzed in detail with the constrained space orbital variation (CSOV) method. Electrostatic and polarization contributions to the interaction are found to be important. Among charge transfer (donation) contributions π electron transfer from Al n to CO corresponding to π backbonding is energetically more important than σ electron transfer from CO to Al n characterizing the σ bond.  相似文献   

6.
Vanadium–silicon heteronuclear oxide cluster cations were prepared by laser ablation of a V/Si mixed sample in an O2 background. Reactions of the heteronuclear oxide cations with methane in a fast‐flow reactor were studied with a time‐of‐flight (TOF) mass spectrometer to detect the cluster distribution before and after the reactions. Hydrogen abstraction reactions were identified over stoichiometric cluster cations [(V2O5)n(SiO2)m]+ (n=1, m=1–4; n=2, m=1), and the estimated first‐order rate constants for the reactions were close to that of the homonuclear oxide cluster V4O10+ with methane. Density functional calculations were performed to study the structural, bonding, electronic, and reactivity properties of these stoichiometric oxide clusters. Terminal‐oxygen‐centered radicals (Ot . ) were found in all of the stable isomers. These Ot . radicals are active sites of the clusters in reaction with CH4. The Ot . radicals in [V2O5(SiO2)1–4]+ clusters are bonded with Si rather than V atoms. All the hydrogen abstraction reactions are favorable both thermodynamically and kinetically. This work reveals the unique properties of metal/nonmetal heteronuclear oxide clusters, and may provide new insights into CH4 activation on silica‐supported vanadium oxide catalysts.  相似文献   

7.
Successively substituted Al13 cluster by B atom both neutral and anionic Al n B m  (n + m = 13) clusters have been investigated by the density functional theory (DFT) at B3LYP/6-31G (d) level, the aim is to understand the evolution of the structural and electronic properties as a function of composition. The results clearly show Al13 cluster as well as Al rich Al n B m clusters prefer the icosahedral geometries while increasing boron contents promote quasi-planar configurations. The geometrical structures of the optimized anionic Al n B m clusters are very close to those of the neutral clusters with smaller structural modifications. Overall, the vertical ionization potential (VIP), the adiabatic electron affinity (AEA), and the energy gaps (E g ) of Al n B m clusters decrease with increasing of substitution. The largest values of second-order energy differences ( \Updelta2E), VIP\Updelta_{2}E), VIP, and E g of Al12B cluster indicate it possesses the most stability among all the investigated clusters, which accords to the experimental results. The simulated photoelectron spectroscopies (PES) of Al n B m clusters have also been discussed in this article.  相似文献   

8.
Density functional calculations are performed to study the structures and electronic properties of Al n Co m clusters with n = 1–7 and m = 1–2. Frequency analysis is also performed after structural optimization to make sure that the calculated ground states are real minima. The corresponding total and binding energies, adiabatic electron affinities and ionization potentials are presented and discussed to aid the identification of our calculations. The BSSE correction is also considered in our calculation. Among Al n Co m , Al n Co m , and Al n Co m = clusters (n = 1–7 and m = 1–2), Al4Co, Al6Co, Al2Co2, and Al6Co2 are predicted to be more stable. Our results are consistent with the available experimental data.  相似文献   

9.
Density functional theory (DFT) method with B3LYP functional and 6-311++G(d,p) basis set has been used to predict the geometries, relative stabilities, electronic structures and bonding analysis of Mixed AlmBn?mH n 2? and CmBn?mH n 2?m (n = 6, 10, 12 and m = 1, 2) clusters; being compared to the BnH n 2? ones. Therefore, the DFT results suggest that the replacing of boron by aluminium or carbon is governed by Natural net charges following Gimar’s and Williams’s rules. The AlmBn?mH n 2? structures are relatively distorted compared to those of BnH n 2? and CmBn?mH n 2?m . In AlmBn?mH n 2? structures Al atoms prefer the adjacent sites, however for the C2Bn?2Hn cluster cages, the carbon atoms are positioned at diametrically opposed sites. The large HOMO–LUMO gaps show that the predicted clusters have chemical stabilities, principally, those of AlmBn?mH n 2? ones, which are not experimentally isolated. The optimized geometries obtained through boron substitution by Al and C lead to compactness and to contracted structures, respectively, where B–B bonds are the shortest in mono- and di-carbaboranes.  相似文献   

10.
《Chemical physics letters》1999,291(3-4):257-265
We report equilibrium geometries, harmonic frequencies, and thermochemical data for the metal cluster–ammonia complexes Agn(NH3) and Cun(NH3) (n=1,2,3,4), Ag4(NH3)2, and Cu4(NH3)2 calculated by a density functional method. The calculated shifts in ammonia umbrella mode frequency correlate with the observed shifts and the calculated enthalpies of complexation. The preferred site for NH3 adsorption and the calculated bond enthalpies can be rationalized by considering atomic charges obtained from a natural population analysis and polarization of the metal electron density.  相似文献   

11.
Two aluminofluorophosphates have been synthesized using 1,4,8,11-tetraazacyclotetradecane (cyclam) as a structure-directing agent (SDA). The two materials were synthesized hydrothermally and their structures solved by microcrystal diffraction using synchrotron radiation. In both cases, the SDA has been located crystallographically. The first material, [F, Cyclam]-AlPO-CHA, has the molecular formula Al6P6O24F2.C10N4H26 and has a framework structure related to the mineral chabazite, with the cyclam molecules occluded within chabazite-like cages (space group P-1, a=9.0993(4) Å, b=9.2232(5) Å, c=9.3929(4) Å, α=77.881(2)o, β=87.205(1)o, γ=87.777(1)o, Z=1, wR(F2)=0.1354, R(F)=0.0487). The second material, [F, Cu-Cyclam]-AlPO-SAS, has the molecular formula Al8P8O32F2.[CuC10N4H24.2H2O] and has a framework structure closely related to STA-6 (SAS) zeolite structure type, although the usual tetragonal symmetry has been reduced to monoclinic by the presence of the fluoride ions (space group P21/n, a=10.3738(4) Å, b=14.8060(5) Å, c=13.4494(5) Å, β=90.275(1)o, Z=2, wR(F2)=0.1484, R(F)=0.0524). The cyclam is occluded as a copper complex ordered within the cages of the structure.  相似文献   

12.
A calculation has been performed to explore the mechanism of aggregation reaction between two small molecular clusters [(Al2O3) n1 and (Al2O3) n2] by the density functional theory method. Five pathways of aggregation reactions between two different (Al2O3)1 clusters isomers were identified. The detailed process of (Al2O3)1 interaction with (Al2O3)2 were also obtained. All the products of the aggregation reactions between two cage structures are cage-dimer structures. We calculated the thermodynamic properties of all the aggregate clusters. The Gibbs free energy changes of aggregation reactions in 0–1000 K were negative and increased with the temperature increase. The energy changes of enthalpy and entropy were also obtained.  相似文献   

13.
The effective geometry parameter, αg = n o /n e, is used to evaluate the orientational order parameter, S, in the case of N-(p-n-butyloxybenzylidene)-p-n-alkoxy anilines, 4O.Om and N-(p-n-heptyloxybenzylidene)-p-n-alkoxy anilines, 7O.Om compounds with m?=?3–7 and 9 in the former case and m?=?3, 5–7 and 9 in the later materials. The results obtained are compared with those calculated using the standard techniques of molecular polarisability and birefringence. The effective geometry parameter's influence on the deflection of light by the liquid crystal compounds is also studied. The variation of temperature gradient of the ordinary refractive index, dn o /dT, and extraordinary refractive index, dn e /dT, of the liquid crystals is also studied.  相似文献   

14.
Density functionla theory (DFT) calculations are performed to characterize geometric and electronic features of the octahedral Al n N n and Al n P n cages (n = 12, 16, 28, 32, and 48). Toward this aim, 15N, 27Al, and 31P chemical shielding (CS) tensors as well as natural charge analyses are calculated for the optimized structures. CS parameters detect three distinct electronic environments for atoms within the Al n N n and Al n P n cages. The chemical shifts of N2 sites belonging to a hexagon and surrounded by three hexagons and a square obtained are different from those of N3 sites belonging to a hexagon that is surrounded only by hexagons—due to different curvatures exerted at the sites with different local structures. In addition, there is an increasing tendency in the Δσ values of the three local structures, Δσ (N1) > Δσ (N2) > Δσ (N3), N1 sites belonging to four-membered rings. The chemical shieldings of those Al and P sites belonging to a hexagon that is surrounded only by hexagons in the cages (360.7–366.7 and 496.5–514.7 ppm) are close to those previously reported for AlP nanotubes. Three distinct electrostatic environments around the N, Al, and P nuclei are also confirmed by the calculated natural charges. It should be noted that the positively charged Al atoms on the cages turn out to be the available sites for adsorption of H2 molecules.  相似文献   

15.
We present an extension of a previously published work (J. Solid State Chem. 181 (2008) 3229) concerning Metal-Organic Frameworks (MOFs) of general formula Ni5(OH)6(CnH2n−4O4)2. A modified synthesis procedure comprising a room-temperature step prior to the hydrothermal treatment was employed. This preliminary step made use of peristaltic pumps allowing slow mixing of the reactants at a constant pH value. Samples of better purity and crystallinity were consequently obtained. In particular, the better crystallinity allowed us to work on two other members of the series, n = 10 and n = 12, which were characterized using synchrotron powder X-ray powder diffraction. These two compounds are isoreticular with the n = 6 and n = 8 compounds previously reported. The crystal structure incorporates the long alkane dioic acid molecules as pillars between complex inorganic layers. Samples of better purity for n = 6 and 8, as well as those of the new compounds with n = 10 and 12, gave us the opportunity to revise the magnetic properties of these MOFs. We found similar magnetic behaviors, independently of the interlayer spacing. We show that, below 19 K, these materials most probably enter a spin-glass or cluster spin-glass state rather than a three-dimensionally long-range ordered state. We link this behavior to the complex topology of the magnetic exchange interactions within the inorganic layers which is very likely to be source of magnetic frustration.  相似文献   

16.
Ce3+,Li+-codoped Ca-α-Sialon phosphors with the formula [Ca(1−2x)CexLix]m/2Si12−(m+n)Alm+nOnN16−n (0≤x≤0.25, 0.5≤m≤3.5, and 0.16≤n≤2.0) have been synthesized by gas pressure sintering (GPS). The effects of the activator concentration and the overall composition of host lattice on the phase evolution, morphology, and optical properties were investigated. The single-phase Ca-α-Sialon:Ce3+,Li+ can be synthesized at x<0.1, 1.0≤m≤2.5, and n≤1.2. The synthesized powders exhibit a relatively dispersive and uniform morphology. Under the near UV excitation, the bright green-blue emission centered at 500-518 nm is observed. The photoluminescence can be tailored by controlling Ce3+ concentration and the overall composition of the α-Sialon host lattice. With increasing the Ce concentration and m value both excitation and emission bands show a red shift, which perfectly matches with the near-UV LEDs in the range of 360-410 nm. The strongest luminescence is achieved at x=0.08-0.1, m=2.0-2.5, and n=1.0. Simultaneously, the highest quantum efficiency and better thermal stability are also present.  相似文献   

17.
New complexes of type [M(HL)(CH3COO)(OH2)m]·nH2O (where M:Co, m = 2, n = 2; M:Ni, m = 2, n = 1.5; M:Zn, m = 0, n = 2.5 and M:Cd, m = 0, n = 0; H2L:5-bromo-N,N′-bis-(salicylidene)-o-tolidine) have been synthesized and characterized by microanalytical, IR, UV–Vis-NIR and magnetic data. Electronic spectra of Co(II) and Ni(II) complexes are characteristic for an octahedral stereochemistry. The IR spectra indicate a chelate coordination mode for mono-deprotonated Schiff base and a bidentate one for acetate ion. The thermal transformations are complex according to TG and DTA curves including dehydration, acetate decomposition and oxidative degradation of the Schiff base. The final product of decomposition is the most stable metallic oxide.  相似文献   

18.
Various properties of water clusters in the n = 2–34 size regime with the change of cluster size have been systemically explored based on the newly developed flexible-body and charge-fluctuating ABEEM/MM water potential model. The ABEEM/MM water model is to take ABEEM charges of all atoms, bonds, and lone-pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The computed correlating properties characterizing water clusters (H2O) n (n = 2–34) include optimal structures, structural parameters, ABEEM charge distributions, binding energies, hydrogen bonds, dipole moments, and so on. The study of optimal structures shows that the ABEEM/MM model can correctly predict the following important structural features, such as the transition from two-dimensional (from dimer to pentamer) to three-dimensional (for clusters larger than the hexamer) structures at hexamer region, the transition from cubes to cages at dodecamer (H2O)12, the transition from all-surface (all water molecules on the surface of the cluster) to one water-centered (one water molecule at the center of the cluster, fully solvated) structures at (H2O)17, the transition from one to two internal molecules in the cage at (H2O)33, and so on. The first three structural transitions are in good agreement with those obtained from previous work, while the fourth transition is different from that identified by Hartke. Subsequently, a systematic investigation of structural parameters, ABEEM charges, energetic properties, and dipole moments of water clusters with increasing cluster size can provide important reference for describing the objective trait of hydrogen bonds in water cluster system, and also provide a strong impetus toward understanding how the water clusters approach the bulk limit.  相似文献   

19.
We present density functional calculations of Al n Au clusters for n = 1–15. The growth pattern for Al n Au (n = 1–7, 12, 14, 15) clusters is the Au atom occupying a peripheral position of Al n clusters, and the growth pattern for Al n Au (n = 8, 10 and 13) clusters is Au-substituted Al n+1 clusters. It is found that the Au atom replaces the surface atom of an Al n+1 cluster and occupies a peripheral position. In addition, the ground state structures of Al n Au clusters are more stable than pure Aln clusters. It is found that the Al13Au cluster exhibits high stability.  相似文献   

20.
Neutral clusters (NH3) n ((CH3)3N) m and (H2O) n ((CH3)3N) m , prepared in a pulsed nozzle supersonic expansion, are ionized by multiphoton ionization and investigated with a reflectron time-of-flight mass spectrometry technique. The observed mixed cluster ions display a maximum intensity atm=2(n+1) whenn ≦ 5 for (NH3) n ·((CH3)3N) m H+ andm=n+2 whenn ≦ 4 for (H2O) n ((CH3)3N) m H+ indicating that the cluster ions with these combinations have a stable closed shell structure. However, the pattern begins to break down whenn>5 for ammonia system andn>4 for water system. Thereupon, the most intense peaks are reached with one molecule less than the pattern required, i.e.m=2(n+1)?1 whenn=6 for (NH3) n ((CH3)3N) m H+ andm=(n+2)?1 whenn=5 for (H2O) n ((CH3)3N) m H+. These findings strongly suggest the onset of hydrogen-bonded ring structures from chain-like ones at critical cluster sizes. This is also supported by the studies of the metastable decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号