首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
2.
In this paper we present a device for the practical application of an ultrasonic critical-angle refractometry (UCRfr) technique. UCRfr is a technique for measuring the velocity of longitudinal, shear and Rayleight waves, developed to improve the traditional ultrasonic methods for measuring the stress level in materials by means of acousto-elasticity. The technique consists of relating the variations in wave propagation velocity to variations in the angle of refraction at the interface with a second medium. Variations in the angle of refraction are determined on the basis of delay in receiving of the same wave at two different points. The study deals with the measurements of velocity changes of longitudinal wave due to uniaxial stress. In the present work the effects of stress on aluminum and steel specimens have been studied. Experimentation has show the potential of the technique for stress measurement; on the other hand, when the applied stress is known, it allows the measurement of the acoustoelastic constants of longitudinal waves. As regards measuring variations in velocity induced by stress, using this method it is possible, with a suitable choice of the material the device is made of, to isolate the effects of stress on velocity from the possible effects of temperature.  相似文献   

3.
A piezoelectric stress gauge is described in this paper. Its major performance data are: measuring range 106–108 Pa, response time less than 7μs; non-linearity within ±1% and total stress measurement error within ± 10%. It can be used for measuring dynamic stress in soil, rock and concrete media as well as dynamic force and dynamic pressure in fluids.  相似文献   

4.
本文给出在不同的正交座标系内,二维湍流速度的一阶和二阶统计量的变换公式。用这些公式和一台一维激光多普勒测速计,测量了方形管道中水流的二维湍流速度脉动的均方值和雷诺切应力。  相似文献   

5.
分析了高地应力条件下静水压力场中圆形隧洞钻爆开挖时开挖边界上初始应力场动态卸荷效应及破坏机理,并计算了其破坏范围。初始应力动态卸荷时,动应力在隧洞径向表现为卸荷回弹,而在切向出现动应力集中,表现为加载。动态卸荷时间对径向应力的影响较对切向应力大,卸荷时间越短,扰动的幅度越大;初始应力动态卸荷在岩体中所造成的破坏范围较准静态卸荷情况大,卸荷时间越短,破坏范围越大。  相似文献   

6.
The MTR 25 is a multitask rheometer (for shear and squeeze flow) with 25 kg of normal force and a partitioned plate. Torque and normal force are measured at both, the inner disk and the outer ring of the plate. The first and second normal stress differences can be determined from a single test. The axial stiffness is high (107 N/m) by using rigid springs and strain gauges for the load cell. Monodisperse polystyrene (M w = 206 kg/mol, 180°C) has been sheared in the range from 0.05 to 47 s − 1. The viscosity and first normal stress difference are highly reproducible. The second normal stress difference scatters and mirrors the instability at the rim. A critical comparison is made between the MTR 25 method and the single transducer evaluation method (RMS 800 method, Schweizer, Rheol Acta 41:337–344, 2002): Both yield excellent and coinciding viscosity and first normal stress difference data. The RMS 800 method gives more stable second normal stress difference data, since the normal force from the outer ring, which is influenced by edge fracture, is not used. Data for the RMS 800 method can be acquired on the MTR 25. The high normal force capacity permits larger samples and higher shear rates than on the RMS 800.
Thomas SchweizerEmail:
  相似文献   

7.
The paper proposes a unified approach to problems of stress concentration near notches with sharp and rounded tip based on the method of singular integral equations. A solution for an elastic region having a V-shaped notch with rounded tip of large curvature is first found. Then, the stress intensity factor at the tip of a sharp-tipped notch is calculated by passing to the limit. Numerical results are obtained for a slit and a square hole in an elastic plane and an edge notch in a half-plane __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 2, pp. 70–87, February 2007. For the centenary of the birth of G. N. Savin.  相似文献   

8.
Illinois coal was ground and wet-sieved to prepare three powder stocks whose particle-size distributions were characterized. Three suspending fluids were used (glycerin, bromonaphthalene, Aroclor), with viscosities s that differed by a factor of 100 and with very different chemistries, but whose densities matched that of the coal. Suspensions were prepared under vacuum, with coal volume fractions that ranged up to 0.46. Viscosities were measured in a cone-and-plate over a shear rate range 10–3–102 s–1. Reduced viscosity r = /s is correlated in the high-shear limit ( ) with/ M, where M is the maximum packing fraction for the high-shear microstructure, to reveal the roles of size distribution and suspending fluid character. A new model that invokes the stress-dependence of M is found to correlate r well under non-Newtonian conditions with simultaneous prediction of yield stress at sufficiently high; a critical result is that stress and not governs the microstructure and rheology. Numerous experimental anomalies provide insight into suspension behavior.  相似文献   

9.
An integrated experimental and numerical investigation was conducted for removing the free-adge stress singularities in dissimilar material joints. A convex inter-face/joint design, inspired by the shape and mechanics of trees, will result in reduced stress singularities at bimaterial corners for most engineering material combinations.In situ photoelasticity experiments on convex polycarbonate-aluminum joints showed that the free-edge stress singularity was successfully removed. As a result, the new design not only improves the static load transfer capacity of dissimilar meterial joints, but also yields more reasonable interfacial tensile strength evaluation. For convex polycarbonate-aluminum and poly(methyl methacrylate)-aluminum joint specimens, the ultimate tensile load increased up to 81% while the total material volume was reduced by at least 15% over that of traditional butt-joint specimens with severe free-edge stress singularities.  相似文献   

10.
The understanding of how materials fail is still today a fundamental research problem for scientist and engineers. The main concern is the assessment of the necessary conditions to propagate a crack that will eventually lead to failure. Nevertheless, this kind of analysis tends to be more complicated, when a prior loading history in the material is taken into consideration and it will be extremely important to recognize all the factors involved in this process. In this work, a numerical simulation and experimental evaluation of the induction of residual stresses, which change the crack initiation conditions, in a modified compact tensile specimen is presented. Several analyses were carried out; an initial evaluation (numerical and experimental) was performed in a specimen without a crack and this was used for the estimation of a residual stress field produced by an overload; three more cases were simulated and a crack was introduced in each specimen (1 mm, 5 mm and 10 mm long, respectively). The overload was then applied to set up a residual stress field into the component; furthermore, in each case the Crack Compliance Method (CCM) was applied to measure the induced residual stress field. By performing this numerical simulation, the accuracy of the CCM can be evaluated and later corroborated by experimental procedure. On the other hand, elastic-plastic finite element analysis was utilized for the residual stress estimation. The analyses were based on the mechanical properties of a biocompatible material (AISI 316L). The obtained results provided significant data about diverse factors, like; the manner in which a residual stress field could modify the crack initiation conditions, the convenient set up for the induction of a beneficial residual stresses field, as well as useful information that can be applied for the experimental implementation in this research. Finally, some beneficial aspects of residual stresses are discussed.  相似文献   

11.
For large-particulated fluids encountered in natural debris flow, building materials, and sewage treatment, only a few rheometers exist that allow the determination of yield stress and viscosity. In the present investigation, we focus on the rheometrical analysis of the ball measuring system as a suitable tool to measure the rheology of particulated fluids up to grain sizes of 10 mm. The ball measuring system consists of a sphere that is dragged through a sample volume of approximately 0.5 l. Implemented in a standard rheometer, torques exerted on the sphere and the corresponding rotational speeds are recorded within a wide measuring range. In the second part of this investigation, six rheometric devices to determine flow curve and yield stress of fluids containing large particles with maximum grain sizes of 1 to 25 mm are compared, considering both rheological data and application in practical use. The large-scale rheometer of Coussot and Piau, the building material learning viscometer of Wallevik and Gjorv, and the ball measuring system were used for the flow curve determination and a capillary rheometer, the inclined plane test, and the slump test were used for the yield stress determination. For different coarse and concentrated sediment–water mixtures, the flow curves and the yield stresses agree well, except for the capillary rheometer, which exhibits much larger yield stress values. Differences are also noted in the measuring range of the different devices, as well as for the required sample volume that is crucial for application.  相似文献   

12.
A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory. A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper. Through introducing the displacement vector, the deformation gradient, and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors, the difficulties in using the curvilinear coordinate system are bypassed. The variational differential quadrature (VDQ) method as a pointwise numerical method is also used to discretize the weak form of the governing equations. Being locking-free, the simple implementation, computational efficiency, and fast convergence rate are the main features of the proposed numerical approach. Some well-known benchmark problems are solved to assess the approach. The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.  相似文献   

13.
14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号