首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents the physicochemical (adsorption and porosity) properties of closed carbon nanotubes, opened through the action of an oxidizing acid and modified with metal ions of nickel, cobalt, and iron/cobalt. The carbon nanotubes were prepared via the oxidation process by means of 65 % nitric acid and/or nickel and cobalt nitrates dissolved with 65 % nitric acid. Using special thermogravimetry Q-TG and sorptometry methods physicochemical properties of pure and modified nanotube surfaces were investigated. A numerical and analytical procedure for the evaluation of heterogeneous properties (adsorption capacity, statistical number of adsorbed liquid layers, desorption energy distribution functions) on the basis of liquid thermodesorption Q-TG from the sample surfaces under the quasi-equilibrium conditions are presented. The calculations of the specific surface areas, pore size and volume, and fractal dimensions of carbon nanotubes were made from sorptometry data.  相似文献   

2.
Summary The paper presents the basic information on nanotechnology and the recent results of studies of physicochemical properties of chosen nanomaterial surfaces (montmorillonites, carbon nanotubes, smart surfaces) by means of complex measuring methods. Physicochemical properties of nanomaterial surfaces by means of the special thermogravimetry Q-TG, sorptometry, porosimetry, atomic force microscopy (AFM) and scanning electron micrograph (SEM) methods were investigated. A numerical and analytical procedure for the evaluation of total heterogeneous properties (desorption energy distribution and pore-size distribution functions) on the basis of liquid thermodesorption from the sample surfaces under the quasi-equilibrium conditions and sorptometry techniques are presented. The evaluation of the fractal dimensions of nanotubes using the sorptometry, porosimetry, thermogravimetry Q-TG and AFM data are presented. The comparison of fractal coefficients calculated based on them with the results from Q-TG, sorptometry, porosimetry and AFM gave good agreement.  相似文献   

3.
Modified carbon multiwall nanotubes were prepared via the oxidation process by means of 65% nitric acid or ferric nitrate dissolved with 65% nitric acid. Using special thermogravimetry and sorptometry methods physicochemical properties of pure and modified nanotube surfaces were investigated. A numerical and analytical procedure for the evaluation of total heterogeneous properties on the basis of liquid thermodesorption from the sample surfaces under the quasi-equilibrium conditions are presented. The calculations of the fractal dimensions of carbon nanotubes using the sorptometry and thermogravimetry data is presented.  相似文献   

4.
Uniformly carbon-covered alumina (CCA) was prepared via the carbonisation of sucrose highly dispersed on the alumina surface. Using special thermogravimetry and sorptometry methods physicochemical properties of carbon-covered alumina surfaces were investigated. A numerical and analytical procedure for the evaluation of total heterogeneous properties (desorption energy distribution and pore-size distribution functions) on the basis of liquid thermodesorption from the sample surfaces under the quasi-equilibrium conditions are presented. The desorption energy distribution was derived from the mass loss Q-TG and the differential mass loss Q-DTG curves of thermodesorption of pre-adsorbed polar and apolar liquid films. For the first time, the evaluation of the fractal dimensions of carbon-covered alumina using the sorptometry, thermogravimetry and AFM data is presented.  相似文献   

5.
This paper presents possible applications of thermal analysis, sorptometry and porosimetry to study physico-chemical properties of Na- and La-montmorillonite samples, especially for determination of total surface heterogeneity. The quasi-isothermal thermogravimetric (Q-TG) mass loss and its first derivative (Q-DTG) curves with respect to temperature and time obtained during programmed liquid thermodesorption under quasi-isothermal conditions have been used to study adsorbed layers and heterogeneous properties of the Na- and La-montmorillonites. Calculations of the desorption energy distribution functions by analytical procedure using mass loss Q-TG and differential mass loss Q-DTG curves of thermodesorption under quasi-isothermal conditions of polar and non-polar liquid vapours preadsorbed on a material surface are presented. Parameters relating to porosity of samples were determined by sorptometry, mercury porosimetry and atomic force microscopy (AFM). From nitrogen sorption isotherms from sorptometry and porosimetry methods, the fractal dimensions of montmorillonites have been calculated. Moreover, a new approach is proposed to calculate fractal dimensions of materials obtained from Q-TG curve; this is compared with values obtained by the above methods. The total heterogeneous properties (energy distribution function and pore-size distribution functions) of samples studied were estimated. The radius and pore volume of the tested samples calculated on the basis of thermogravimetry, sorptometry and porosimetry techniques were compared and good correlations obtained.  相似文献   

6.
Physico-chemical properties (adsorption capacity, desorption energy distribution and pore-size distribution functions) of nanomaterial surfaces from selected materials, based on sorptometric and liquid thermodesorption measurements under quasi-equilibrium conditions, are presented. The fractal dimensions of nanotubes using sorptometric and AFM data have been evaluated. Comparison of thermogravimetric and other data provide new information about the adsorption and pore structure of the studied materials. The fractal dimensions of nanomaterial surfaces using sorptometry are in good agreement with those from AFM.  相似文献   

7.
Using special thermogravimetry Q-TG method, physicochemical properties of lunar sample surfaces were investigated. The numerical and analytical procedures for the evaluation of energetic heterogeneous properties on the basis of liquid thermodesorption from the sample surfaces under the quasi-equilibrium conditions are presented. The calculations of the adsorption capacity and energy distribution functions of liquids on lunar surfaces on the basis of the thermogravimetry data are presented.  相似文献   

8.
Complex studies of physicochemical properties of pure and modified of aluminia oxides samples are presented. The presence of Mn2+ and Ni2+ modifiers on the aluminium oxide surface causes increase in water adsorption capacity and decrease in benzene and n-octane adsorption. This is due to decrease of specific surface area, volume and radius of pores as a result of surface impregnation and microcrystal formation during modification with manganese and nickel chlorides. Microcrystal formation on the surface and porosity decrease as confirmed by AFM, EDX and powder diffraction studies using automated diffractometer by step scanning. From the Q-TG and Q-DTG data, the energies of liquid desorption from the surface of the samples and the functions of desorption, energy distribution were calculated. High degree of nonlinearity of the functions resulting from great heterogeneity of the studied surface was found. Adsorption of cations creates more homogeneous surface in aluminium oxide, and it is responsible for the change in adsorbate molecule interaction energy and changes mechanism of adsorption and desorption as well as thickness and structure of the adsorbed film. From the experimental data some parameters characterizing adsorption properties and porosity of the studied samples were determined using the complex measuring methods (thermal analysis, sorptometry, porosimetry, AFM and EDX).  相似文献   

9.
《Analytical letters》2012,45(16):2524-2545
Abstract

A folic acid-functionalized carbon nanotube nanomaterial was prepared by immobilizing folic acid molecules on the carbon nanotubes through covalent bonds. The material was characterized using Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy and scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that folic acid molecules were grafted on the carbon nanotube surfaces through the amide bonds between the carboxylic acid functional groups of the oxidized carbon nanotubes and the amine groups of the folic acid molecules. The folic acid molecules bonded to carbon nanotube surfaces led to appreciable changes in the morphology. By using currently obtained folic acid-functionalized carbon nanotube nanomaterial as electroactive material in a polyvinyl chloride membrane, a potentiometric copper (II)-selective sensor was developed. Membrane optimization studies showed that the composition exhibiting the best potentiometric properties was 4.0% (w/w) folic acid–carbon nanotube, 64.0% (w/w) o-nitrophenyl octylether, and 32.0% (w/w) polyvinyl chloride. The developed sensor displayed a linear response in the copper (II) concentration ranging from 1.0?×?10–6 to 1.0?×?10–1 M with a correlation coefficient of 0.9993 and a slope of 29.8?±?0.6?mV/decade of activity. The response time, detection limit, and pH working range were determined to be 4?s, 3.8?×?10–7 M and 4.0–8.0, respectively. The developed sensor showed highly selective and satisfactory potentiometric response for the determination of copper (II) in a Turkish coin.  相似文献   

10.
Modified multiwall carbon nanotubes (MWCNTs) by nitric acid solution were used to investigate the adsorption behavior of zirconium from aqueous solution. Pristine and oxidized MWCNTs were characterized using nitrogen adsorption/desorption isotherm, Boehm’s titration method, thermogravimetry analysis, transmission electron microscopy and Fourier transform infrared spectroscopy. The results showed that the surface properties of MWCNTs such as specific surface area, total pore volume, functional groups and the total number of acidic and basic sites were improved after oxidation. These improvements are responsible for their hydrophobic properties and consequently an easy dispersion in water and suitable active sites for more adsorption of zirconium. The adsorption of Zr(IV) as a function of initial concentration of zirconium, contact time, MWCNTs dosage, HCl and HNO3 concentration and also ionic strength was investigated using a batch technique under ambient conditions. The experimental results indicated that sorption of Zr(IV) was strongly influenced by zirconium concentrations, oxidized MWCNTs content and acid pH values. The calculated correlation coefficient of the linear regressions values showed that Langmuir model fits the adsorption equilibrium data better than the Freundlich model. Kinetic data of sorption indicated that equilibrium was achieved within 60 min and the adsorption process can be described by the pseudo second-order reaction rate model. Based on the experimental results, surface complexation is the major mechanism for adsorption of Zr(IV) onto MWCNTs. Also, Study on the desorption process of zirconium showed that the complete recovery can be obtained using nitric or hydrochloric acids of 4 M.  相似文献   

11.
A novel, efficient, heterogeneous, and reusable multi-walled carbon nanotubes (MWCNTs), functionalized with phosphonic acid (MWCNTs–C–PO3H2) has been synthesized. The synthesized CNTs were characterized using some electron microscopic techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), Energy dispersive X-ray spectroscopy (EDAX), and also some thermal and spectroscopic methods such as thermogravimetry (TG). The nitrogen adsorption behavior of the MWCNTs–C–PO3H2 catalyst was evaluated using the TG instrumentation system at 25 °C. The catalyst was applied successfully for highly efficient and selective acetylation of alcohols, phenols, thiols and aromatic amines with acetic anhydride at room temperature under solvent-free conditions. The reusability of the catalyst was checked and the recovered catalyst was reused for five runs without significant loss in activity.  相似文献   

12.
Films consisting of pristine multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped MWCNTs (N-MWCNTs) were fabricated by means of chemical vapor deposition and chemically decorated with gold nanoparticles (AuNPs). Optical microscopy and image analysis reveal that the deposited AuNPs have diameters of 50–200 nm and 100–400 nm, respectively. The AuNP-modified films of MWCNTs and of N-MWCNTs were initially investigated with respect to their response to the ferro/ferricyanide redox system. The N-MWCNTs/AuNPs exhibit lower detection limit (0.345 μM) for this redox system compared to that of MWCNTs/AuNPs (0.902 μM). This is probably due to the presence of nitrogen that appears to enhance the electrocatalytic activity of MWCNTs. The findings demonstrate that the electrochemical responses of both films are distinctly enhanced upon deposition of AuNPs on their surfaces. The detection limits of MWCNTs/AuNPs and N-MWCNTs/AuNPs systems are lower by about 43 % and 27 %, respectively, compared to films not modified with AuNPs. The electrocatalytic activity of the films towards the oxidation of ascorbic acid (AA), uric acid (UA), and dopamine (DA) was studied. The findings reveal that N-MWCNTs/AuNPs represent a powerful analytical tool that enables simultaneous analysis of AA, UA, and DA in a single experiment.
Figure
Films consisting of pristine and nitrogen-doped multi-walled carbon nanotubes were fabricated, decorated with gold nanoparticles, and their electrocatalytic activity towards oxidation of ascorbic acid, uric acid, and dopamine was investigated. An enhanced electrocatalytic activity was observed on modified nitrogen-doped carbon nanotubes, where all biomolecules can be simultaneously analyzed.  相似文献   

13.
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). In the first step, the cationic Pb(II) complex of 2,2-bipyridyl is formed which, in a second step, is adsorbed on ox-MWCNTs mainly due to electrostatic and van der Waals interactions. The Pb(II) ions were then eluted with dilute nitric acid and quantified by FAAS. The effects of pH value, mass of sorbent, concentration of 2,2-bipyridyl, stirring time, of type, concentration and volume of eluent, of eluent flow rate and sample volume were examined. Most other ions do not affect the recovery of Pb(II). The limits of detection are 240 and 60 ng L?1 for sample volumes of 100 and 400 mL, respectively. The recovery and relative standard deviation are >95 % and 2.4 %, respectively. Other figures of merit include a preconcentration factor of 160 and a maximum adsorption capacity of 165 mg g?1. The method was successfully applied to the determination of Pb(II) in spiked tap water samples. The accuracy of the method was verified by correctly analyzing a certified reference material (NCS ZC85006; lead in tomatoes).
Figure
A solid phase extraction method is presented for the preconcentration of trace lead ions on oxidized multiwalled carbon nanotubes (ox-MWCNTs). Most other ions do not affect the recovery of Pb(II).  相似文献   

14.
This study explores whether nanoparticles incorporated in polymers always act as synergists of conventional flame-retardant additives. For this purpose, two different filler nanoparticles, namely organically modified layered-silicate clay minerals or nanoclays and multi-walled carbon nanotubes, were incorporated in poly(methyl methacrylate) filled with an organophosphorus flame-retardant that acts through intumescence. Effective dispersion techniques specific to each nanoparticle were utilized and prepared samples were thoroughly characterized for their nanocomposite morphologies. Nanoclays were shown to outperform carbon nanotubes in respect of improving the fire properties of intumescent formulations assessed by cone calorimeter analysis. An intriguing explanation for the observed behaviour was the restriction of intumescence by strong carbon nanotube networks formed on the flaming surfaces during combustion contrary to enhanced intumescent chars by nanoclays. Carbon nanotubes surpassed nanoclays considering the thermal stability of intumescent formulations in thermogravimetry whereas mechanical properties were significantly superior with nanoclays to those with carbon nanotubes.  相似文献   

15.
We report on an electrochemical sensor for the sensitive amperometric determination of ascorbic acid (AA). Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step which provides a simple and controllable method and greatly improves the electrocatalytic oxidation of AA. The effects of scan rate, solution pH and working potential were studied. A linear relationship exists between the current measured and the concentration of AA in the range from 1 μM to 10 μM and 0.01 mM to 9 mM, with a limit of detection as low as 0.51 μM (S/N?=?3). The sensor is selective, stable and satisfyingly reliable in real sample experiments. In our eyes, it has a large potential for practical applications.
Figure
Aniline containing suspended silicotungstic acid and carbon nanotubes was electropolymerized on the surface of a glassy carbon electrode in a single step. Due to the novel properties of silicotungstic acid and carbon nanotubes doped in the polyaniline film, this sensor showed excellent analytical performance for the amperometric determination of ascorbic acid at a low potential.  相似文献   

16.
应用红外吸收光谱、扫描电子显微镜分别对纳米碳管和硝化后的纳米碳管进行表征,将其制备成粉末微电极,并在碱性溶液中测试它对对硝基苯酚的电还原性能.实验表明:经硝化处理后,碳管表面修饰了羰基,其电还原性能明显提高.依据实验结果探讨了硝化后纳米碳管于对硝基苯酚电还原过程中的反应机理.  相似文献   

17.
Multilayer carbon nanotubes were modified by ultrasonic treatment in nitric acid and subsequent calcination in an inert atmosphere of argon at temperatures of 500, 800, and 1200°C. The dependence of the adsorption of benzoic acid on carbon nanotubes on the temperature of their calcination was analyzed.  相似文献   

18.
This work reports the study of the effect of chemical functionalization of carbon nanotubes on their dispersion in poly(lactic acid). The nanotubes were functionalized by the 1,3‐dipolar cycloaddition reaction, generating pyrrolidine groups at the nanotube surface. Further reaction of the pyrrolidine groups with poly(lactic acid) was studied in solution and in the polymer melt. The former involved refluxing the nanotubes in a dimethylformamide/polymer solution; the latter was carried out by direct melt mixing in a microcompounder. The carbon nanotubes collected after each process were characterized by thermogravimetry and by X‐ray photoelectron spectroscopy, showing evidence of polymer bonded to the nanotube surface only when the reaction was carried out in the polymer melt. The composites with polymer modified nanotubes present smaller average agglomerate area and a narrower agglomerate area distribution. In addition, they show improved tensile properties at low CNT concentration and present lower electrical resistivity. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3740–3750  相似文献   

19.
Two commercial activated carbons with differences in their superficial chemistry, one granular and the other pelletised, were modified for use in phenol and 2,4-dinitrophenol adsorption. In this paper, changes to the activated carbon surface will be evaluated from their immersion calorimetry in water and benzene, and they will then be compared with Area BET, chemical parameters, micropore size distributions and hydrophobicity factors of the modified activated carbons. The activated carbons were modified using 60 % solutions of phosphoric acid (H3PO4), nitric acid (HNO3), zinc chloride (ZnCl2) and potassium hydroxide (KOH); the activated carbon/solution ratio was 1:3 and impregnation was conducted 291 K for a period of 72 h before samples were washed until a constant pH was obtained. Water immersion calorimetry showed that the best results were obtained from activated carbons modified with nitric acid, which increased from ?10.6 to ?29.8 J g?1 for modified granular activated carbon, and ?30.9 to ?129.3 J g?1 for pelletised activated carbon. Additionally, they showed the best results in phenol and 2.4-dititrophenol adsorption. Those results indicate that impregnation with nitric acid under the employed conditions could generate a greater presence of oxygenated groups on their surface, which favours hydrogen bond formation and the increased adsorption of polar compounds. It should also be noted that immersion enthalpy in benzene for modified activated carbon with nitric acid is the method with the lowest value, which is consistent with the increased presence of polar groups on its surface. Regarding hydrophobicity factors, it was observed that granular carbons modified with nitric acid and potassium hydroxide have the lowest ratios, indicating greater interaction with water.  相似文献   

20.
Rod-shaped cellulose nanocrystals obtained by acid hydrolysis of eucalyptus fibers (CNCa) presented high aspect ratio (estimated length and width of 180 and 5 nm, respectively) and zeta potential of ?(17 ± 1) mV at pH 6. This typical morphology of cellulose nanocrystals was in contrast to nanoparticles obtained upon enzymatic hydrolysis of bacterial cellulose (CNCe), which were asymmetric and irregular due to surface-bound cellulases and presented a distinctive surface roughness. Interestingly, CNCe also displayed axial grooves, to yield a C-shape cross section that has not been reported before. The effect of the characteristic shape and surface chemistry of CNCa and of grooved CNCe was studied at oil/water interfaces and solid surfaces. Emulsions (20 % v/v oil) prepared with the CNCa were more stable than those prepared with CNCe, owing to their characteristic shape and surface chemistry. Hydrophilic (silica surfaces cationized by pre-adsorbed polycation) and hydrophobic (polystyrene films) solid surfaces were used as substrates for the adsorption of CNCe and CNCa for each type of surface. The ellipsometric data and AFM images indicated larger affinity of CNCe than CNCa for the hydrophobic surface. On the other hand, CNCa formed homogeneous monolayer on hydrophilic surfaces, whereas CNCe formed discontinuous films. Sequential adsorption behavior of CNCa on CNCe layers (or vice versa) suggested that the interaction between them is controlled by the orientation of enzymes bound to CNCe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号