首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
A number of poly(lactic acid-co-glycolic acid)/polyurethane (PLGA/PU) blend films with various PU mole contents were prepared by casting the polymer blend solution in chloroform. The surface morphologies of the PLGA/PU blend films were studied by scanning electron microscopy (SEM). The thermal, mechanical and chemical properties of the PLGA/PU blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests and surface contact angle tests. The results revealed that the introduction of PU could markedly modify the properties of PLGA films.  相似文献   

2.
The influence of structural variations in bismaleimides (BMIs) on Alder‐ene polymerization of O‐allyl aralkyl phenolic resin [O‐allyl Xylok (OAX)] was examined. Toward this, three BMI functional monomers, viz. 2,2′‐bis 4‐[(4′‐maleimido phenoxy) phenyl] propane (BMIP), 4,4′‐Bismaleimido diphenyl methane (BMPM), and Bis 4‐maleimidodiphenyl ether (BMPE), were blended with OAX in different molar ratios. The cure characterization revealed that the allyl‐dominated blends cure by three distinct reaction steps whereas the maleimide‐dominated blends exhibit a two‐step reaction invariable with the maleimide structure. Introduction of more maleimide functionalities increased the Tg and thermal stability of the co‐cured network. Differences in the storage modulus values and Tg of the BMI/OAX systems were correlated to the chemical structure of the BMI and crosslink density. Flexural, interlaminar shear strength (ILSS), and impact strength of the composites decreased systematically with the increase in maleimide content in the blend. Among the BMIs studied, Tg, thermal stability, and ILSS retention at elevated temperature were superior for BMPM/OAX blend owing to their high crosslink density and rigid backbone of the system. Allyl‐rich compositions exhibited improved mechanical properties owing to the better resin–reinforcement interaction as revealed from morphological analysis by scanning electron microscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
With the use of X-ray diffraction analysis, differential scanning calorimetry, dynamic mechanical analysis, and ATR FTIR spectroscopy, the structures and mechanical and thermophysical properties of composite films of various compositions obtained on the basis of polyvinylpyrrolidone and poly(diphenyl oxide amido-N-phenylphthalimide) are investigated. At all component ratios, these polymers form a complex via a system of hydrogen bonds during the formation of composites from solution. The best compatibility of blend components is attained at a polymer ratio of 1: 1, at which individual phases of initial components are absent. The temperatures of glass transition and of other thermal transitions of the samples are determined. Structural changes occurring in the films before and after pervaporation are studied. The considered membranes may show promise for the separation of liquids only in the case of the predominant formation of an interpolymer complex stable during the transport of penetrates of various polarities, such as cyclohexane or water, across the membrane.  相似文献   

4.
Polymeric membranes based on cellulose acetate (CA)--sulfonated polysulfone blends at three different polymer compositions were prepared by solution blending and phase inversion technique, characterized and subjected to annealing at 70, 80 and 90 °C. The permeate water flux, separation of bovine serum albumin and its flux by the blend membranes before and after thermal treatment, have been compared and discussed. Similarly, CA and epoxy resin (diglycidyl ether of bisphenol-A) were blended in various compositions, in the presence and in the absence of polyethyleneglycol 600 as non-solvent additive, using N,N-dimethylformamide as solvent, and used for preparing ultraflltration membranes by phase inversion technique. The polymer blend composition, additive concentration, casting and gelation conditions were optimized. Blend membranes were characterized in terms of compaction, pure water flux, water content and membrane resistance. The effects of polymer blend composition and additive concentration on the above parameters were determined and the results are discussed.  相似文献   

5.
Benzoxazine-bismaleimide blends: Curing and thermal properties   总被引:4,自引:0,他引:4  
A blend of bisphenol A based benzoxazine (Bz-A) and a bismaleimide (2,2-bis[4(4-maleimidophenoxy) phenyl] propane (BMI), was thermally polymerised in varying proportions and their cure and thermal characteristics were investigated. The differential scanning calorimetric analysis, supplemented by rheology confirmed a lowering of the cure temperature of BMI in the blend implying catalysis of the maleimide polymerisation by benzoxazine. FTIR studies provided evidences for the H-bonding between carbonyl group of BMI and -OH group of polybenzoxazine in the cured matrix. The cured matrix manifested a dual phase behaviour in SEM and DMTA with the minor phase constituted by polybenzoxazine dispersed in an interpenetrating polymer network (IPN) of polybenzoxazine and cured BMI. The IPN possessed improved thermal stability over the constituent polybenzoxazine. A benzoxazine monomer possessing allyl functional groups, 2,2′-bis(8-allyl-3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) propane (Bz-allyl) was reactively blended with the same bismaleimide in varying stoichiometric ratios (Bz-allyl/BMI), where the curing involved mainly Alder-ene reaction between allyl- and maleimides groups and ring-opening polymerisation of benzoxazine. The rheological analysis showed the absence of catalytic polymerisation of BMI in this case. The overall processing temperature was lowered in the blend owing to the co-reaction of the two systems to form a single-phase matrix. The cured resins of both Bz-A/BMI and Bz-allyl/BMI blends exhibited better thermal stability than the respective polybenzoxazines. The Tg of the IPN was significantly improved over that of polybenzoxazine (Bz-A). However, the co-reaction resulted in a marginal decrease in the Tg of the system in comparison to the polybenzoxazine (Bz-allyl).  相似文献   

6.
This study describes the fabrication and characterization of castor oil‐based waterborne polyurethane/polyaniline (COWPU/PAni) conducting polymer blend films. The COWPU synthesized from isophorone diisocyanate was reacted with castor oil to form prepolymers, which were chain extended by reacting it with N‐methyldiethanolamine. Quaternization and self‐emulsification including deionized water followed in COWPU dispersions. Also, COWPU/PAni hybrid dispersions were synthesized with 2, 4, and 6 wt% of PAni–dodecyl benzene sulfonic acid to make different conductive composites. The outcome of COWPU/PAni was characterized by Fourier transform infrared spectrometer, differential scanning calorimeter, thermogravimetric analysis, dynamic mechanical and thermal analyzer, and scanning electron microscopy analysis. According to Fourier transform infrared spectrometer analysis, hydrogen bonding appears between –NH of PAni and C?O of COWPU. Meanwhile, incorporating PAni can improve the thermal stability of COWPU. The resulting COWPU/PAni conducting blend films can be used as antistatic and anticorrosive coating materials. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Two types of novel functionalized N‐[4‐(4′‐hydroxyphenyloxycarbonyl)phenyl]maleimide and N‐(4‐{[2‐(3‐thienyl)acetyl]oxyphenyl}oxycarbonylphenyl)maleimide (MIThi) were synthesized starting from 4‐maleimido benzoic acid. Photoinduced radical homopolymerization of MIThi and its copolymerization with styrene were performed at room temperature to give linear polymers containing pendant thienyl moieties using ω,ω‐dimethoxy‐ω‐phenylacetophenone as an initiator. Copolymers' compositions and the equilibrium constant (K) for electron donor–acceptor complex formation suggest an alternating nature of the copolymerization. The monomer reactivity ratios and Alfrey–Price Q,e values were also determined. The thermal behavior of the new synthesized monomers and polymers was investigated by differential scanning calorimetry and thermogravimetric analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 995–1004, 2002  相似文献   

8.
壳聚糖-聚羟基丁酸酯共混膜的制备与性质   总被引:1,自引:0,他引:1  
以乙酸为共溶剂,制备了壳聚糖-聚羟基丁酸酯(CTS-PHB)共混膜,利用红外光谱(FT-IR)、广角X粉末衍射(WAXD)、扫描电镜(SEM)及差热分析(DTA)表征了共混膜的化学组成、晶形、形貌和热稳定性能。研究表明:CTS和PHB可在体积百分数为62.5%的乙酸溶液中共混,形成表面光滑、不透明的膜,干态共混膜具备一定的力学强度。各比例的CTS-PHB共混膜有相同的热分解温度,共混膜的形貌特征随两组分质量配比变化,其中mPHB/mCTS=1/1的共混膜显示出良好的有序结构。  相似文献   

9.
The addition-cured blends of diallyl bisphenol A formaldehyde resin (ABPF) with various bismaleimides (BMIs) were evaluated for thermal stability and degradation behavior by thermogravimetric analysis (TGA). TGA of the blend of ABPF and 2,2-bis 4-[(4-maleimido phenoxy) phenyl] propane (BMIP) with varying maleimide to allylphenol stoichiometry indicated that the thermal stability of the system was only marginally improved by the increase in BMI stoichiometry in the blend. The effect of BMI structure on thermal stability was studied using four different BMIs, viz. bis (4-maleimido phenyl) methane (BMIM), bis (4-maleimido phenyl) ether (BMIE), bis (4-maleimido phenyl) sulfone (BMIS) and BMIP. TGA showed a two stage decomposition pattern for BMIS system and a single stage for all the other three. The thermograms of BMIM and BMIE were identical and superior to that of BMIS; the latter showing a relatively poor performance at lower temperatures. Compared to the BMI-adduct of monomeric diallyl bisphenol A (DABA), the polymeric analog viz. ABPF system exhibited better thermal stability. Non-isothermal kinetic analyses of the different systems showed the decomposition occurring in at least two kinetic steps. The computed activation energy exhibited a direct correlation to the relative thermal stability of the systems.  相似文献   

10.
A photopolymer based on N-(phenyl)maleimide was synthesized and the liquid crystal (LC) alignment effects of the photopolymer layer on homeotropic alignment were studied. Good LC alignment with UV exposure of PMI5CA (N-(phenyl)maleimide with a 5-carbon chain cinnamoyl group) was obtained. However, defective LC alignment was observed for PMI3CA (N-(phenyl)maleimide with a 3-carbon chain cinnamoyl group) and PMIF (N-(phenyl)maleimide including a fluoro-cinnamoyl group). Good LC alignment with UV exposure on the PMI5CA surface was observed with annealing temperature up to 150°C. It seems that the LC aligning ability of the photopolymer layers based on N-(phenyl)maleimide depends on the side chain length of the photopolymer.  相似文献   

11.
Novel phenolic novolac resins, bearing maleimide groups and capable of undergoing curing principally through the addition polymerization of these groups, were synthesized by the polymerization of a mixture of phenol and N‐(4‐hydroxy phenyl)maleimide (HPM) with formaldehyde in the presence of an acid catalyst. The polymerization conditions were optimized to get gel‐free resins. The resins were characterized by chemical, spectral, and thermal analyses. Differential scanning calorimetry and dynamic mechanical analysis revealed an unexpected two‐stage curing for these systems. Although the cure at around 275°C was attributable to the addition polymerization reaction of the maleimide groups, the exotherm at around 150 to 170°C was ascribed to the condensation reaction of the methylol groups formed in minor quantities on the phenyl ring of HPM. Polymerization studies of non‐hydroxy‐functional N‐phenyl maleimides revealed that the phenyl groups of these molecules were activated toward an electrophilic substitution reaction by the protonated methylol intermediates formed by the acid‐catalyzed reaction of phenol and formaldehyde. On a comparative scale, HPM was less reactive than phenol toward formaldehyde. The presence of the phenolic group on N‐phenyl maleimide was not needed for its copolymerization with phenol and formaldehyde. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 641–652, 2000  相似文献   

12.
Blend films of sodium alginate and polyacrylamide (PAAm) were prepared by mixing the aqueous solution of both samples at a different ratio. All blend films obtained are optically clear to the naked eye. The structure and physical properties of the films were studied by FT-infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential thermal analysis (DTA), thermogravimetic analysis (TGA), scanning electron microscopy (SEM), and tensile strength test. The results showed that the occurrence of interactions between -COO?, -OH groups of sodium alginate and -CONH2 groups of PAAm in the blends through hydrogen formation. The blend films exhibited the higher thermal stability and improved mechanical properties in dry states. These properties had the maximum value around 20 wt% PAAm content in the blend film. The morphological transition of the blend films from sodium alginate-like to PAAm-like was observed by scanning electron microscopy.  相似文献   

13.
Radical copolymerization of N-(alkyl-substituted phenyl)maleimides (RPhMI) with isobutene (IB) was carried out with an initiator in various solvents at 60°C. The copolymerization of N-(2,6-diethylphenyl)maleimide (2,6-DEPhMI) with IB in benzene proceeded readily in a homogeneous system to give an alternating copolymer over a wide range of the comonomer compositions in the feed. Whereas the alternating tendency of the copolymerization of other RPhMI with IB decreased depending on the alkyl substituents of RPhMI in the following order: 2,6-DEPhMI > N-(2,6-dimethylphenyl)maleimide ≥ N-(2-methylphenyl)maleimide >. N-(4-ethylphenyl)maleimide. The copolymerization reactivities were discussed based on the rate constants for the homo-propagations and cross-propagations. Subsequently, the effect of the solvent on the rate and the reactivity ratios was examined. It was revealed that the copolymerization in chloroform proceeded with higher alternating tendency at a higher copolymerization rate than in the copolymerizations in benzene or dioxane. The copolymers of RPhMI with IB showed excellent thermal stability, i.e., high glass transition temperature and initial decomposition temperature over 200 and 350°C, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A kraft lignin derivative (KLD) obtained by reaction with p-aminobenzoic acid/phthalic anhydride was blended with poly(vinyl alcohol) (PVA) by solution casting from DMSO. PVA and PVA/KLD films were exposed to ultraviolet radiation (24, 48, and 96 h) and analyzed by thermogravimetry (TG), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (1H NMR) spectroscopy, and scanning electron microscopy (SEM). PVA films show a loss of thermal stability due to irradiation. PVA/KLD reveals greater thermal stability than PVA and an increase in thermal stability after irradiation. These results suggest that the incorporation of KLD into PVA provides a gain in thermal and photochemical stability. FTIR, 1H NMR, DSC, and TG results obtained for the blends suggest that intermolecular interactions between PVA and KLD chains are present. SEM micrographs revealed blend miscibility for a KLD blend content of up to 15 wt%, as observed at magnification of 1000 times.  相似文献   

15.
Miscibility and thermal stability of ethyl vinyl acetate (EVA) and ethylene octane (EO) copolymer blends with different compositions were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and atomic force microscopy (AFM). The degradation behavior by TGA data under dynamic conditions in an inert atmosphere shows the blends to be immiscible. The addition of EO improves the thermal stability of EVA for all composition and temperature ranges. Using the DSC experiment, two single crystallization temperatures (T c) for the blends were obtained and the crystallization and melting enthalpy with compositions abiding by the additive rules, confirm the immiscibility of the blends. The rate of crystallization seems to be independent of blend compositions. The surface morphology using AFM shows a thin and elongated crystallites of pure EO, and a bulky and random morphology for EVA, where a perfect mixture of aforementioned structures for 50/50 blend, with the immiscible domains of both EO and EVA. The 2D-power spectral density (PSD) analysis shows the surface roughness of 50/50 blends is in between of EO and EVA. Both AFM observations and quantitative PSD results, along the line with DSC and TGA. The experimental data for miscibility and stability by TGA, DSC and AFM techniques reveal that blends of EVA/EO are immiscible in the entire range of compositions.  相似文献   

16.
Radical copolymerization of N-(azo dye) maleimide or N-(substituted phenyl) maleimide and styrene were carried out using 2,2′-azobis-isobutyronitrile as an initiator in THF at 60°C. These copolymers exhibit high solubility in most of the organic solvents and excellent thermal stability up to 280°C under nitrogen atmosphere. The copolymer films which were heated at 200–240°C under high corona field exhibit d33 = 3–5 pm/V, in the Maker-fringe measurement. Experimental results also showed that the copolymer with azo dye as chromophore did not decay in second harmonic response even at 130°C. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Novel aromatic polyimides containing bulky-flexible pendent group were successfully synthesized by direct polycondensation of N-(4-(4-(4,5-diphenyl-1H-imidazole-2-yl)phenoxy)phenyl)-3,5-diaminobenzamide with various tetracarboxylic dianhydrides. These polymers are soluble in most of the aprotic organic solvents such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphoramide, m-cresol, and pyridine. The prepared polymers were characterized by viscometry, FT-IR, 1H NMR, and UV-Vis spectroscopy, fluorimetry, elemental analysis; the thermal properties were evaluated by differential scanning calorimetric and thermogravimetric analysis.  相似文献   

18.
A series of poly(vinyl alcohol)/poly(butyl acrylate-co-methyl methacrylate) [PVA/P(BA-co-MMA)] blend films with different P(BA-co-MMA) content were prepared by the solution casting method. Surface morphologies of the PVA/P(BA-co-MMA) blend films were studied by scanning electron microscopy and atomic force microscopy. Thermal, mechanical, and chemical properties of PVA/P(BA-co-MMA) blend films were investigated by differential scanning calorimeter, thermogravimetric analysis, tensile tests, and surface contact angle tests. It was revealed that the introduction of P(BA-co-MMA) could affect the properties of the PVA films. The results also showed that, when P(BA-co-MMA) mole content is 3 %, the tensile strength and the surface contact angle of the polymer blend film are 20.4 MPa and 43.5°, respectively, suggesting that the polymer blend film holds both a better mechanical property and a better chemical property.  相似文献   

19.
Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. These include N-(2-fluoro phenyl), N-(3-fluoro phenyl), N-(4-fluoro phenyl), N-(2,4-difluoro phenyl), N-(2,5-difluoro phenyl), N-(2,3,5,6-tetrafluoro phenyl), and N-(pentafluoro phenyl). The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by AIBN in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. On the basis of the comparison between the overall activation energy of the thermal degradation of poly[N-(fluoro phenyl) maleimide]s and NMR spectra of their corresponding monomers, it can be concluded that the 1H shifts due to ethylenic protons are so characteristic in sign and magnitude as to be useful in thermal stability elucidation. Some qualitative explanations were given on the stability of these polymers as affected by the type and size of the substituent. The x-ray diffractograms of all samples show two rather broad peaks indicative of noncrystalline structures. The location of the peaks does not depend upon preparation conditions and temperature. Poly(N-maleimide)s of fluoroanilines have not been hitherto described.  相似文献   

20.

Blend films of poly(vinyl alcohol) (PVA) and sodium alginate (NaAlg) were prepared by casting from aqueous solutions. This blend films were characterized by tensile strength test, Fourier transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The miscibility in the blends of PVA and NaAlg was established on the basis of the thermal analysis results. DSC showed that the blends possessed single, composition‐dependent glass transition temperatures (Tgs), indicating that the blends are miscible. FT‐IR studies indicate that there is the intermolecular hydrogen bonding interactions, i.e. –OH…?OOC– in PVA/NaAlg blends. The blend films also exhibited the higher thermal stability and their mechanical properties improved compared to those of homopolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号