首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the contact resistance (Rc) between carbon filler/natural rubber (NR) nanocomposite and gold ball: three varieties of nanocomposites were prepared from carbon black (CB) and two kinds of multi-walled carbon nanotubes (MWCNTs) with different diameter. Rc of MWCNT/NR nanocomposite was remarkably less than that of CB/NR nanocomposites. The relationship between Rc of MWCNT/NR nanocomposites and applied load was expressed in the formula, Rc=C·Pn (P: load, C and n: constant): for the MWCNTs (diameters of 13 nm)/NR and MWCNTs (diameters of 67 nm)/ NR nanocomposites, they were expressed as Rc=1724·P−0.6 and Rc=344·P−0.37, respectively. The former (MWCNT, ϕ13 nm) showed higher Rc than the latter (MWCNT, ϕ67 nm) over whole region of applied load. The mechanical hardness of the former was higher (90 HsA) than that of the latter (82 HsA). Therefore, the smaller contact area between the nanocomposite and gold ball of the former resulted in higher Rc. The apparent specific contact resistivity was calculated from the observed values of Rc and contact area: 130 Ω mm2 and 127 Ω mm2 for the former (MWCNT, ϕ13 nm) and the latter (MWCNT, ϕ67 nm), respectively.  相似文献   

2.
We report device linearity improvement and current enhancement in both a heterostructure FET (HFET) and a camel-gate FET (CAMFET) using InGaAs/GaAs high-low and GaAs high-medium-low doped channels, respectively. In an HFET, a low doped GaAs layer was employed to build an excellent Schottky contact. In a GaAs CAMFET, a low doped layer together withn+andp+layers formed a high-performance majority camel-diode gate. Both exhibit high effective potential barriers of >1.0 V and gate-to-drain breakdown voltages of >20.0 V (atIg=1.0 mA mm−1). A thin, high doped channel was used to enhance current drivability and to improve the transconductance linearity. A 2×100 μm2HFET had a peak transconductance of 230 mS mm−1and a current density greater than 800 mA mm−1. The device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 200 to 800 mA mm−1. A 1.5×100 μm2CAMFET had a peak transconductance of 220 mS mm−1and a current density greater than 800 mA mm−1. Similarly, the device had a transconductance of more than 80 percent of the peak value over a wide drain current range of 160 to 800 mA mm−1. The improvement of device linearity and the enhancement of current density suggest that high-to-low doped-channel devices for both an HFET and a CAMFET are suitable for high-power large signal circuit applications.  相似文献   

3.
PurposeTo obtain water and lipid diffusion-weighted images (DWIs) simultaneously, we devised a novel method utilizing chemical shift displacement-based separation of lipid tissue (SPLIT) imaging.Materials and methodsSingle-shot diffusion echo-planar imaging without fat suppression was used and the imaging parameters were optimized to separate water and lipid DWIs by chemical shift displacement of the lipid signals along the phase-encoding direction. Using the optimized conditions, transverse DWIs at the maximum diameter of the right calf were scanned with multiple b-values in five healthy subjects. Then, apparent diffusion coefficients (ADCs) were calculated in the tibialis anterior muscle (TA), tibialis bone marrow (TB), and subcutaneous fat (SF), as well as restricted and perfusion-related diffusion coefficients (D and D*, respectively) and the fraction of the perfusion-related diffusion component (F) for TA.ResultsWater and lipid DWIs were separated adequately. The mean ADCs of the TA, TB, and SF were 1.56 ± 0.03 mm2/s, 0.01 ± 0.01 mm2/s, and 0.06 ± 0.02 mm2/s, respectively. The mean D*, D, and F of the TA were 13.7 ± 4.3 mm2/s, 1.48 ± 0.05 mm2/s, and 4.3 ± 1.6%, respectively.ConclusionSPLIT imaging makes it possible to simply and simultaneously obtain water and lipid DWIs without special pulse sequence and increases the amount of diffusion information of water and lipid tissue.  相似文献   

4.
PurposeThe dependence of the direction-averaged diffusion-weighted imaging (DWI) signal in brain was studied as a function of b-value in order to help elucidate the relationship between diffusion weighting and brain microstructure.MethodsHigh angular resolution diffusion imaging (HARDI) data were acquired from two human volunteers with 128 diffusion-encoding directions and six b-value shells ranging from 1000 to 6000 s/mm2 in increments of 1000 s/mm2. The direction-averaged signal was calculated for each shell by averaging over all diffusion-encoding directions, and the signal was plotted as a function of b-value for selected regions of interest. As a supplementary analysis, similar methods were also applied to retrospective DWI data obtained from the human connectome project (HCP), which includes b-values up to 10,000 s/mm2.ResultsFor all regions of interest, a simple power law relationship accurately described the observed dependence of the direction-averaged signal as a function of the diffusion weighting. In white matter, the characteristic exponent was 0.56 ± 0.05, while in gray matter it was 0.88 ± 0.11. Comparable results were found with the HCP data.ConclusionThe direction-averaged DWI signal varies, to a good approximation, as a power of the b-value, for b-values between 1000 and 6000 s/mm2. The exponents characterizing this power law behavior were markedly different for white and gray matter, indicative of sharply contrasting microstructural environments. These results may inform the construction of microstructural models used to interpret the DWI signal.  相似文献   

5.
This study aims to develop and evaluate a new method for fast high resolution T1 mapping of the brain based on the Look-Locker technique. Single-shot turboflash sequence with high temporal acceleration is used to sample the recovery of inverted magnetization. Multi-slice interleaved acquisition within one inversion slab is used to reduce the number of inversion pulses and hence SAR. Accuracy of the proposed method was studied using simulation and validated in phantoms. It was then evaluated in healthy volunteers and stroke patients. In-vivo results were compared to values obtained by inversion recovery fast spin echo (IR-FSE) and literatures. With the new method, T1 values in phantom experiments agreed with reference values with median error < 3%. For in-vivo experiments, a T1 map was acquired in 3.35 s and the T1 maps of the whole brain were acquired in 2 min with two-slice interleaving, with a spatial resolution of 1.1 × 1.1 × 4 mm3. The T1 values obtained were comparable to those measured with IR-FSE and those reported in literatures. These results demonstrated the feasibility of the proposed method for fast T1 mapping of the brain in both healthy volunteers and stroke patients at 3T.  相似文献   

6.
The increased signal-to-noise ratio (SNR) offered by functional Magnetic Resonance Imaging (fMRI) at 7T allows the acquisition of functional data at sub-millimetric spatial resolutions. However, simply reducing partial volume effects is not sufficient to precisely localize task-induced activation due to the indirect mechanisms that relate brain function and the changes in the measured signal.In this work T2* and T2 weighted Echo Planar Imaging (EPI) schemes based on Gradient Recalled Echo (GRE) and Spin Echo (SE) were evaluated in terms of temporal SNR, percent signal change, contrast to noise ratio (CNR), activation volume, and sensitivity and specificity to gray matter. Datasets were acquired during visual stimulation at in-plane resolutions ranging between 1.5 × 1.5 mm2 and 0.75 × 0.75 mm2 targeting the early visual cortex.While similar activation foci were obtained in all acquisitions, at in-plane resolutions of 1.0 × 1.0 mm2 and larger voxel sizes the T2 weighted contrast of SE-EPI allowed the identification of the activation site with better spatial accuracy. However, at sub-millimetric resolutions the decrease in temporal SNR significantly hampered the sensitivity and the extent of the activation site. On the other hand, high resolution T2* weighted data collected with GRE-EPI provided higher CNR and sensitivity, benefiting from the decreased physiological and partial volume effects. However, spurious activations originating from regions of blood drainage were still present in GRE data, and simple thresholding techniques were found to be inadequate for the removal of such contributions. The combination of 2-class and 3-class automated segmentations, performed directly in EPI space, allowed the selection of active voxels in gray matter. This approach could enable GRE-EPI to accurately map functional activity with satisfactory CNR and specificity to the true site of activation.  相似文献   

7.
PurposeTo explore the application of histogram analysis in preoperative T and N staging of gastric cancers, with a focus on characteristic parameters of apparent diffusion coefficient (ADC) maps.Materials and methodsEighty-seven patients with gastric cancers underwent diffusion weighted magnetic resonance imaging (b = 0, 1000 s/mm2), which generated ADC maps. Whole-volume histogram analysis was performed on ADC maps and 7 characteristic parameters were obtained. All those patients underwent surgery and postoperative pathologic T and N stages were determined.ResultsFour parameters, including skew, kurtosis, s-sDav and sample number, showed significant differences among gastric cancers at different T and N stages. Most parameters correlated with T and N stages significantly and worked in differentiating gastric cancers at different T or N stages. Especially skew yielded a sensitivity of 0.758, a specificity of 0.810, and an area under the curve (AUC) of 0.802 for differentiating gastric cancers with and without lymph node metastasis (P < 0.001). All the parameters, except AUClow, showed good or excellent inter-observer agreement with intra-class correlation coefficients ranging from 0.710 to 0.991.ConclusionCharacteristic parameters derived from whole-volume ADC histogram analysis could help assessing preoperative T and N stages of gastric cancers.  相似文献   

8.
ObjectiveMultiparametric magnetic resonance imaging (MRI) and PI-RADS (Prostate Imaging – Reporting and Data System) has become the standard to determine a probability score for a lesion being a clinically significant prostate cancer. T2-weighted and diffusion-weighted imaging (DWI) are essential in PI-RADS, depending partly on visual assessment of signal intensity, while dynamic-contrast enhanced imaging is less important. To decrease inter-rater variability and further standardize image evaluation, complementary objective measures are in need.MethodsWe here demonstrate a sequence enabling simultaneous quantification of apparent diffusion coefficient (ADC) and T2-relaxation, as well as calculation of the perfusion fraction f from low b-value intravoxel incoherent motion data. Expandable wait pulses were added to a FOCUS DW SE-EPI sequence, allowing the effective echo time to change at run time. To calculate both ADC and f, b-values 200 s/mm2 and 600 s/mm2 were chosen, and for T2-estimation 6 echo times between 64.9 ms and 114.9 ms were used.ResultsThree patients with prostate cancer were examined and all had significantly decreased ADC and T2-values, while f was significantly increased in 2 of 3 tumors. T2 maps obtained in phantom measurements and in a healthy volunteer were compared to T2 maps from a SE sequence with consecutive scans, showing good agreement. In addition, a motion correction procedure was implemented to reduce the effects of prostate motion, which improved T2-estimation.ConclusionsThis sequence could potentially enable more objective tumor grading, and decrease the inter-rater variability in the PI-RADS classification.  相似文献   

9.
PurposeTo investigate biexponential apparent diffusion parameters of prostate central gland (CG) cancer, stromal hyperplasia (SH), and glandular hyperplasia (GH) and compare with monoexponential apparent diffusion coefficient (ADC) value for discriminating prostate cancer from benign hyperplasia.Materials and MethodsTwenty-one CG cancer foci, 23 SH and 26 GH nodules in the CG were analyzed in 39 patients (19 with CG cancer, 20 with peripheral zone cancer but no CG cancer) who underwent preoperative conventional DWI (b-value 0, 1000 s/mm2) and a 10 b-value (range 0 to 3000 s/mm2) DWI. All of the cancer and hyperplastic foci on MR images were localized on the basis of histopathologic correlation. The ADC value of the monoexponential DWI, and the fast apparent diffusion coefficient (ADCf), slow apparent diffusion coefficient (ADCs) value and the fraction of ADCf (f) of the biexponential DWI were calculated for all of the lesions. Receiver operating characteristic (ROC) analysis was performed for the differentiation of CG cancer from SH and GH.ResultsThe ADC values (× 10? 3 mm2/s) were 0.87 ± 0.11, 1.06 ± 0.15, and 1.61 ± 0.27 in CG cancer, SH and GH foci, respectively, and differed significantly, yielding areas under the ROC curve (AUCs) of 1.00 and 0.80 for the differentiation of carcinoma from GH and SH, respectively. The ADCf (× 10? 3 mm2/s), ADCs (× 10? 3 mm2/s) and f for cancer were 1.92 ± 0.38, 0.53 ± 0.17, and 47.7 ± 6.1%, respectively, which were lower than the same values for GH (3.43 ± 0.65, 1.12 ± 0.21, 61.1 ± 8.7%) (all p < 0.01). The ADCf and ADCs for cancer were also lower than those for SH (3.11 ± 0.30, 0.79 ± 0.21) (all p < 0.01). The ADCf yielded AUCs (1.00, p > 0.01) that were comparable to those from ADC for the differentiation of cancer from GH, while ADCf yielded higher AUCs (0.92) compared with ADC (p < 0.01) for the differentiation of cancer from SH. ADCs and f revealed AUCs of 0.97 and 0.90, respectively, for the differentiation of cancer from GH, and the ADCs offered relatively lower AUCs (0.68) for differentiating cancer from SH.ConclusionBiexponential DWI could potentially improve the differentiation of prostate cancer in CG, and the ADCf of the biexponential model offers better accuracy than ADC.  相似文献   

10.
W.X. Lan  Q.P. Wang  Z.J. Liu  X.Y. Zhang  F. Bai  H.B. Shen  L. Gao 《Optik》2013,124(24):6866-6868
A diode end-pumped passively Q-switched Nd:YAG/KTA intracavity Raman laser is presented. A KTA crystal with a size of 5 mm × 5 mm × 25 mm is used as the Raman active medium and its 234 cm?1 Raman mode is employed to finish the conversion from 1064 nm fundamental laser to 1091 nm Raman laser. A 2 mm thick Cr4+:YAG crystal is used as the saturable absorber. With an LD pump power of 7.5 W, the first-Stokes power of 250 mW is obtained with a pulse repetition frequency of 14.5 kHz. The corresponding diode-to-Stokes conversion efficiency is 3.3% and the pulse energy is 17.2 μJ. Pulse width is measured to be 12.6 ns and peak power is 1.4 kW.  相似文献   

11.
Femtosecond X-ray science is a new frontier in ultrafast research in which time-resolved measurement techniques are applied with X-ray pulses to investigate structural dynamics at the atomic scale on the fundamental time scale of an atomic vibrational period (∼100 fs). This new research area depends critically on the development of suitable femtosecond X-ray sources with the appropriate flux (ph/(s·0.1% BW)), brightness (ph/(s·mm2·mrad2·0.1% BW)), and tunability for demanding optical/X-ray pump probe experiments. In this paper we review recently demonstrated techniques for generating femtosecond X-rays via interaction between femtosecond laser pulses and relativistic electron beams. We give an overview of a novel femtosecond X-ray source that is proposed based on a linear accelerator combined with X-ray pulse compression.  相似文献   

12.
《Current Applied Physics》2009,9(5):1054-1061
Metal–organic coordination complex single crystals bis thiourea zinc acetate (BTZA) and Cd2+ doped BTZA have been synthesized and grown successfully by slow-cooling technique from their aqueous solutions. Single crystals of pure and Cd2+ doped BTZA with dimensions of 35 × 4 × 2 mm3 and 10 × 5 × 6 mm3, respectively were obtained with well defined morphology. The as grown single crystals are characterized by single crystal XRD studies and melting point measurements which reveal the incorporation of metallic dopants has not changed the structure of the parent crystal. The powder X-ray diffractogram of the grown crystals has been recorded and the various planes of reflection identified shows shift in the peak positions. The metal coordination with thiourea through sulphur in pure and Cd2+ doped BTZA were ascertained by FTIR studies and optical absorption study to identify the UV cut-off range. The presence of metals in pure and Cd2+ doped BTZA crystal lattice were confirmed by atomic absorption spectroscopy (AAS). The thermal decomposition of pure and Cd2+ doped BTZA crystals were investigated by thermo gravimetric analyses (TGA) and differential thermal analysis (DTA) indicate that doped crystals are more stable than pure crystals. The dielectric response of the crystals were studied in the frequency range 100 Hz–5 MHz at different temperatures and the results are discussed. Second harmonic generation (SHG) measurement confirms that the pure and Cd2+ doped BTZA have nonlinear optical (NLO) property. Laser damage threshold value of 12.44 MW/cm2 has been determined using Q-switched Nd:YAG laser operating at 1064 nm and with 8 ns pulses in single shot mode for pure BTZA single crystal is reported for the first time.  相似文献   

13.
BackgroundPrevious studies have demonstrated a correlation between Expanded Disability Status Scale (EDSS) and Diffusion Tensor Imaging (DTI) metrics, but the conclusions were based on evaluations of the entire cervical spinal cord.ObjectivesThe purpose of this study was to quantify the FA and MD values in the spinal cord of NMO patients, separating the lesion sites from the preserved sites, which has not been previously preformed. In addition, we attempted to identify a correlation with EDSS.MethodsDTI was performed in 11 NMO patients and 11 healthy individuals using a 1.5-T MRI scanner. We measured the FA and MD at ROIs positioned along the cervical spinal cord. The mean values of FA and MD at lesion, preserved and spinal cord sites were compared with those of a control group. We tested the correlations between the mean FA and MD with EDSS.ResultsFA in NMO patients was significantly reduced in lesion sites (0.44 vs. 0.55, p = 0.0046), preserved sites (0.46 vs. 0.55, p = 0.0015), and all sites (0.45 vs 0.55, p = 0.0013) while MD increased only in lesion sites (1.03 × 10 3 mm2/s vs. 0.90 × 10 3 mm2/s, p = 0.009). The FA demonstrated the best correlation with EDSS (r =  0.7603, p = 0.0086), particularly at lesion sites.ConclusionsThe results reinforce the importance of the FA index and confirm the hypothesis that NMO is a diffuse disease.  相似文献   

14.
A simple and facile route is developed for the preparation of mesoporous titanium nitride (TiN) microspheres with a large surface area and a highly porous structure. This method involves the preparation of an amorphous precursor via a solvothermal reaction and subsequent short-time nitridation process to mesoporous TiN. X-ray diffraction and X-ray photoelectron spectroscopy analyses confirm the composition of the resultant sample. The mesoporous structure of the as-prepared TiN sample has been studied by nitrogen adsorption/desorption measurement. The surface area obtained by the Brunauer–Emmett–Teller method is 50.6 m2 g−1 and the pore sizes are in the range of 2.0–4.0 nm. In addition, the obtained sample is evaluated as a new sorbent for Cd2+ removal. Experimental parameters such as solution pH, contact time and concentration of adsorbate are optimized. The maximum adsorption capacity for Cd2+ removal is found to be 12.40 mg g−1 and it is a potentially attractive adsorbent for Cd2+ removal from aqueous solution.  相似文献   

15.
The goal of this project was to develop and apply techniques for T2 mapping and 3D high resolution (1.5 mm isotropic; 0.003 cm3) 13C imaging of hyperpolarized (HP) probes [1-13C]lactate, [1-13C]pyruvate, [2-13C]pyruvate, and [13C,15N2]urea in vivo. A specialized 2D bSSFP sequence was implemented on a clinical 3T scanner and used to obtain the first high resolution T2 maps of these different hyperpolarized compounds in both rats and tumor-bearing mice. These maps were first used to optimize timings for highest SNR for single time-point 3D bSSFP acquisitions with a 1.5 mm isotropic spatial resolution of normal rats. This 3D acquisition approach was extended to serial dynamic imaging with 2-fold compressed sensing acceleration without changing spatial resolution. The T2 mapping experiments yielded measurements of T2 values of > 1 s for all compounds within rat kidneys/vasculature and TRAMP tumors, except for [2-13C]pyruvate which was ~ 730 ms and ~ 320 ms, respectively. The high resolution 3D imaging enabled visualization the biodistribution of [1-13C]lactate, [1-13C]pyruvate, and [2-13C]pyruvate within different kidney compartments as well as in the vasculature. While the mouse anatomy is smaller, the resolution was also sufficient to image the distribution of all compounds within kidney, vasculature, and tumor. The development of the specialized 3D sequence with compressed sensing provided improved structural and functional assessments at a high (0.003 cm3) spatial and 2 s temporal resolution in vivo utilizing HP 13C substrates by exploiting their long T2 values. This 1.5 mm isotropic resolution is comparable to 1H imaging and application of this approach could be extended to future studies of uptake, metabolism, and perfusion in cancer and other disease models and may ultimately be of value for clinical imaging.  相似文献   

16.
《Current Applied Physics》2009,9(5):1125-1128
Sodium bitartrate monohydrate (SBTMH) a new organometallic nonlinear optical material, with molecular formula, [C4H5NaO6 · H2O] has been synthesized at ambient temperature. Spectral, thermal and optical techniques have been employed to characterize the new material. Bulk single crystals of size 13 × 4 × 4 mm3 of SBTMH have been grown by slow cooling method. The unit cell parameters of the grown crystal were determined by single crystal XRD. Functional groups present in the sample were identified by FTIR spectral analysis. Thermal stability of SBTMH was determined using TGA/DTA. The grown crystals exhibit nonlinear properties. The dielectric response of the crystal with varying frequencies was studied. The optical transparency range and the lower cut-off wavelength of the material were identified from the UV–vis–NIR absorption spectrum.  相似文献   

17.
《Current Applied Physics》2010,10(2):544-547
High-pure, single-phase, free of voids and high mass density AgGaS2 polycrystalline was synthesized by a new method, i.e. two-temperature zone vapor-transporting together with the mechanical and melt temperature oscillation method (TVMMTOM), directly from high-purity (6 N) elements silver, gallium and sulfur with excess sulfur. The mechanism and advantages of the new method for synthesizing high-quality AgGaS2 were discussed. It is found that the polycrystalline material synthesized by the new method is superior to that synthesized by the conventional method, what is more the new method can avoid the explosion of the synthetic quartz ampoule. Adopting the modified Bridgman method an integral and crack-free AgGaS2 single crystal with diameter of 14 mm and length of 63 mm has been obtained. It was found that there was a (1 0 1) cleavage face and the four order X-ray spectrum of the {1 0 1} faces was observed. By the method of DSC analysis the melting and freezing points of the AgGaS2 single crystal were about 995 and 955 °C. The transmission spectra of the AgGaS2 sample of 10 × 8 × 2 mm3 were obtained by means of UV and IR spectrophotometer. The limiting wavelength was 470 nm and the band gap was 2.64 eV. It can be found in the infrared spectrum that the infrared transmission was above 55% from 4000 to 800 cm−1, and the infrared transmittance of the crystal is up to 63% at 10.6 μm, which is higher than that of the crystal grown using polycrystalline materials synthesized by the conventional method. The value of α in 10.6 μm was 0.267 cm−1. Above mentioned results showed that the crystal was of good quality and TVMMTOM is preferable for synthesizing high-quality AgGaS2 polycrystalline materials.  相似文献   

18.
This paper presents a miniaturized high performance high temperature superconducting (HTS) microwave receiver front-end subsystem, which uses a mini stirling cryocooler to cool a high selective HTS filter and a low noise amplifier (LNA). The HTS filter was miniaturized by using specially designed compact resonators and fabricating with double-sided YBCO films on LAO substrate which has a relatively high permittivity. The LNA was specially designed to work at cryogenic temperature with noise figure of 0.27 dB at 71 K. The mini cryocooler, which is widely used in infrared detectors, has a smaller size (60 mm × 80 mm × 100 mm) and a lighter weight (340 g) than the stirling cryocoolers commonly used in other HTS filter subsystem. The whole front-end subsystem, including a HTS filter, a LNA, a cryocooler and the vacuum chamber, has a size of only φ120 mm × 175 mm and a weight of only 3.3 kg. The microwave devices inside the subsystem are working at 71.8 K with a consumed cooling power of 0.325 W. The center frequency of this subsystem is 925.2 MHz and the bandwidth is 2.7 MHz (which is a fractional bandwidth of 0.2%), with the gain of 19.75 dB at center frequency and the return loss better than ?18.11 dB in the pass band. The stop band rejection is more than 60 dB and the skirt slope is exceeding 120 dB MHz?1. The noise figure of this subsystem is less than 0.8 dB. This front-end subsystem can be used in radars and communication systems conveniently due to it’s compact size and light weight.  相似文献   

19.
Here we explore the exceptional structural characteristics of a set of graphene-related materials prepared by a wet chemical approach. We present a comprehensive study of the effects of morphology, sonication, temperature, probe species, and stacking behaviour on the measurement of graphene surface area. Nitrogen gas was used in the solid state gas adsorption measurements and methylene blue dye for adsorption measurements on aqueous dispersions of graphene. The surface area values obtained are among the highest reported for synthetic graphenes: 1700 m2 g? 1 in aqueous dispersions and 612 m2 g? 1 in the solid state. Microscopy revealed the graphene used in the study was present in large part as free sheets and electron diffraction confirmed the successful synthesis of high quality graphene with a regular C–C bond length of 1.41 ± 0.02 Å.  相似文献   

20.
A new δ -doped In0.24Ga0.76As/GaAs pseudomorphic high electron mobility transistor (HEMT) using a graded superlattice spacer grown by molecular beam epitaxy (MBE) has been successfully fabricated and investigated. The present device structure demonstrated a more than 40% enhancement of electron mobility and 20% higher product value of electron mobility and two-dimensional electron gas (2DEG) concentration than those of the conventional HEMT with single undoped spacer under the same growth specifications. Superior device characteristics were achieved by employing the thickness-graded superlattice spacer to accommodate the lattice-mismatch-induced strain and to improve the interfacial quality. For a gate length of 1 μ m, the maximum drain-to-source saturation current density and extrinsic transconductance of the present HEMT design are 165 mA mm  1and 107 mS mm  1, respectively, at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号