首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, we propose a more general forecasting method to predict the sound absorption coefficients at six central frequencies and the average sound absorption coefficient of a sandwich structure nonwoven absorber. The kernel assumption of the proposed method is that the acoustics property of sandwich structure nonwoven absorber is determined by some easily measured structural parameters, such as thickness, area density, porosity, and pore size of each layer, if the type of the fiber used in nonwoven is given. By holding this assumption in mind, we will use general regression neural network (GRNN) as a prediction model to bridge the gap between the measured structural parameters of each absorber and its sound absorption coefficient. In experiment section, one hundred sandwich structure nonwoven absorbers are particularly designed with ten different types of meltblown polypropylene nonwoven materials and four types of hydroentangled E-glass fiber nonwoven materials firstly. Secondly, four structural parameters, i.e., thickness, area density, porosity, and pore size of each layer are instrumentally measured, which will be used as the inputs of GRNN. Thirdly, the sound absorption coefficients of each absorber are measured with SW477 impedance tube. The sound absorption coefficient at 125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz and their average value are used as the outputs of GRNN. Finally, the prediction framework will be carried out after the desired training set selection and spread parameter optimization of GRNN. The prediction results of 20 test samples show the prediction method proposed in this paper is reliable and efficient.  相似文献   

2.
《Applied Acoustics》2007,68(11-12):1468-1484
Measurements of the surface impedance and the physical parameters of seven glass wool samples and six polyester fibre samples with flow resistivities between 4100 and 69,900 Pa s m−2 have been made. Comparisons of measured absorption coefficients and those predicted from the Johnson–Allard formulae using the measured and deduced physical parameters show discrepancies that exceed 20% for some samples and frequencies. By modifying the Johnson–Allard formula for effective density and by introducing a correction factor that is a function of flow resistivity based on data fitting, it has been found possible to improve the predictions. However, it has also been found that a similar modification of the formula for bulk modulus is necessary to reduce the discrepancies with data to below 5% in the frequency range between 800 Hz and 5 kHz.  相似文献   

3.
《Applied Acoustics》2007,68(11-12):1502-1510
Al–Si closed-cell aluminum foam sandwich panels (1240 mm × 1100 mm) of different thicknesses and different densities were prepared by molten body transitional foaming process in Northeastern University. The experiments were carried out to investigate the sound insulation property of Al–Si closed-cell aluminum foam sandwich panels of different thicknesses and different densities under different frequencies (100–4000 Hz). Results show that sound reduction index (R) is small under low frequencies, large under high frequencies; thickness affects the sound insulation property of material obviously: when the thicknesses of Al–Si closed-cell aluminum foam sandwich panels are 12, 22, and 32 mm, the corresponding weighted sound reduction indices (RW) are 26.3, 32.2, and 34.6 dB, respectively, the rising trend tempered; the increase of density of Al–Si closed-cell aluminum foam can also increase the sound insulation property: when the densities of aluminum foam are 0.31, 0.51, and 0.67 g/cm3, the corresponding weighted sound reduction indices (RW) are 28.9, 34.3, and 34.6 dB, the increasing value mitigating.  相似文献   

4.
In this paper, a methodology is proposed for designing porous fibrous material with optimal sound absorption under set frequency bands. The material is assumed to have a rigid frame and a hexagonal arrangement of fibers, and the analytical model derived by Johnson, Champoux and Allard (“JCA model”) is used to investigate the influences of the micro-structural parameters (fiber radius r and gap w) on sound absorption performance, and the macro-acoustic parameters used in JCA model is determined via finite element analysis for the hexagonal micro-structure. Moreover, a mathematical model is constructed to obtain the optimized micro-structure design, with fiber radius and gap as design parameters and average absorption performance of the porous fibrous material under set frequency band as target. Utilizing the constructed optimization model, the microstructure parameters are derived with optimal sound absorption under low frequency (20  f < 500 Hz), medium frequency (500  f < 2000 Hz) and high frequency (2000  f < 15,000 Hz), respectively. On top of that, for a given thickness of porous fibrous material layer, the analytical relationship between fiber radius and optimal porosity under set frequency bands is constructed.  相似文献   

5.
Re-Active Passive devices have been developed to control low-frequency (<1000 Hz) noise transmission through a panel. These devices use a combination of active, re-active, and passive technologies packaged into a single unit to control a broad frequency range utilizing the strength of each technology over its best suited frequency range. The Re-Active Passive device uses passive constrained layer damping to cover relatively high-frequency range (>150 Hz), reactive distributed vibration absorber to cover the medium-frequency range (50–200  Hz), and active control for controlling low frequencies (<150 Hz). The actuator was applied to control noise transmission through a panel mounted in the Transmission Loss Test Facility at Virginia Tech. Experimental results are presented for the bare panel, and combinations of passive treatment, reactive treatment, and active control. Results indicate that three Re-Active Passive devices were able to increase the overall broadband (15–1000 Hz) transmission loss by 9.4 dB. These three devices added a total of 285 g to the panel mass of 6.0 kg, or approximately 5%, not including control electronics.  相似文献   

6.
A series of thin, lightweight and low-cost sound absorption composites consisting of chlorinated polyethylene (CPE) and seven-hole hollow polyester fibers (SHPF) were fabricated. The sound absorption property of the fiber composites was tested in an impedance tube, the morphology was characterized by a scanning electron micrographs (SEM) and the mechanical property of fiber composites was measured by strength tester. The effect of fiber content, composite thickness, and cavity depth on the sound absorption property, and the effect of fiber content on mechanical property and micro-structure were investigated. The results demonstrated that acoustical characteristics of porous materials were exhibited by mixing with SHPF. Acoustical absorption of materials increased significantly with increasing SHPF content. Furthermore, the acoustic property of composite with 20% SHPF concentration and 3 mm thickness was noted in the low frequency range, giving a sound absorption coefficient peak, 0.695 at 2500 Hz. Composite with air back cavity had resonance characteristics of a lamella with an absorption peak only occurring at a specific frequency. Compared with pure CPE of similar thickness, mechanically CPE/SHPF composite at the 1 mm thickness and 20% SHPF exhibited 228% higher tensile stress and 96% lower breaking strain. It appears from these results that CPE/SHPF composites have potential for engineering applications especially as sound absorbers.  相似文献   

7.
ObjectiveTo quantitatively evaluate induced phase errors in fast spin echo (FSE) signals due to low frequency electromagnetic inference (EMI).MethodsSpecific form of Bloch equation is numerically solved in time domain for two different FSE pulse sequences (ETL = 8) with two different bandwidths. A single spin is modeled at x = 10 cm, EMI frequencies are simulated from 1 to 1000 Hz and phase errors at different echo times are calculated.ResultsPhase errors in the received echo signals induced by EMI are significantly higher at low frequencies (< 200 Hz) than at high frequencies and the phase errors at low frequencies can be effectively reduced by using high receiving bandwidth.ConclusionPulse sequence bandwidth can be used to control the phase errors in the FSE signals due to low frequency EMI.  相似文献   

8.
The transmissibility of a seat depends on the dynamic response of the human body (which varies between individuals, body locations, and vibration magnitudes) and the dynamic response of the seat (which varies according to seat design). In the fore-and-aft direction, the transmissibility of a seat backrest was therefore expected to vary with vertical position on the backrest. This experimental study with 12 subjects investigated how backrest transmissibility varied with both the vertical measurement position and the magnitude of vibration. The transmissibilities of the backrest of a car seat and a block of solid foam were measured at five heights above the seat surface with random fore-and-aft vibration at five magnitudes (0.1, 0.2, 0.4, 0.8 and 1.6 ms−2 rms) over the range 0.25–20 Hz. The median transmissibilities exhibited resonances in the range 4–5 Hz for the car seat and in the range 3–6 Hz for the foam. The backrests showed clear changes in transmissibility with vertical position, but there were minimal changes in the resonance frequencies. For both backrests, the transmissibilities were greatest at the middle of the backrest. The least transmissibility was measured at the top of the car seat but at the bottom of the foam backrest. At each measurement position on both backrests, the transmissibility was non-linear with vibration magnitude: the resonance frequencies and transmissibilities at resonance decreased with increasing vibration magnitude. The variations in backrest transmissibility with vertical position and with vibration magnitude were sufficiently great to affect assessments of backrest dynamic performance. The results suggest that the fore-and-aft transmissibilities of backrests should be evaluated from more than one measurement location.  相似文献   

9.
In this paper, the authors examine the effect of compressing a poroelastic fibrous layer lined with an isotropic plate on the sound transmission loss (TL). For this purpose, a 2-in. thick fibrous material and two isotropic plates with critical frequencies around 2300 Hz and 9700 Hz were used. The transfer matrix method was applied and the porous layer was assumed to have either a rigid, limp or elastic frame. Current models of compression are outlined, and measurements of the airflow resistivity as a function of compression show that these models are suitable only for low compression rates. TL predictions are compared next to experimental data in a range between 100 Hz and 10000 Hz for three compression rates, corresponding to 0%, 20% and 50%. The fibrous is uniformly compressed over 100% of its surface. Our experiments showed that compression reduces the TL by a maximum of 5 dB for a 50% compression, mainly at the mid-frequency range, around 800 Hz. This is due to a resonance in the thickness of the porous material, increasing the radiation efficiency of the structure at mid-frequencies. Moreover, reduction of the porous thickness and increase of the airflow resistivity with compression are the variations influencing the most the TL of the structure. These trends were also detected with the limp and rigid frame models but with a lower degree of accuracy compared to the elastic frame model.  相似文献   

10.
The high transparency of carbon-containing materials in the spectral region of “carbon window” (λ  4.5–5 nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5 nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd–glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.  相似文献   

11.
A series of measurements on four polyurethane foam samples with pore membranes and a polyurethane foam sample without pore membranes have been made. Tortuosity has been deduced using the ultrasonic slope method. It has been found that the deduced value of tortuosity depends on the measurement temperature and for two of the polyurethane foam samples with many pore membranes physically meaningful values of tortuosity cannot be obtained at a temperature of around 25 °C. However more realistic values of tortuosity have been obtained by from measurements at or around the glass transition temperature of polyurethane foam (i.e. at ?20 °C) when using the ultrasonic slope method.Flow resistivity, Young’s moduli and loss factors have been measured also.Vibration of the pore membranes has been observed to influence the effective density and characteristic impedance derived from the surface impedance measured in an impedance tube. This paper discusses relationships between membrane vibration and the slow and fast compressional waves. The relative merits of predictions based on rigid-porous models and the Biot–Johnson–Champoux–Allard model are discussed also.  相似文献   

12.
As sound and vibration fields in dwellings exhibit modal behaviour at frequencies below 200 Hz, a systematic investigation of measurement and prediction uncertainty associated with impact sound transmission at low frequencies must include the effects of: location of the impact, type of floor, edge conditions, floor and room dimensions, room absorption and position of the receiver. Experimentally validated analytical models, described in a companion paper, have been used in an extensive investigation of impact sound transmission through rectangular homogeneous concrete floors and floating floors. The models were used to describe the effect of modal coupling and then to perform parametric and statistical studies aimed to identify the main factors affecting low frequency impact sound transmission.  相似文献   

13.
Hot carrier cooling in few-layer and multilayer epitaxial graphene on SiC, and chemical vapor deposition (CVD) grown graphene transferred onto a glass substrate was investigated by transient absorption spectroscopy and imaging. Coupling to the substrate was found to play a critical role in charge carrier cooling. For both multilayer epitaxial graphene and monolayer CVD graphene, charge carriers transfer heat predominantly to intrinsic in-plane optical phonons of graphene. At high pump intensity, a significant number of optical phonons are accumulated, and the optical phonon lifetime presents a bottleneck for charge carrier cooling. This hot phonon effect did not occur in few-layer epitaxial graphene because of strong coupling to the substrate, which provided additional cooling channels. The limiting charge carrier lifetimes at high excitation densities were 1.8 ± 0.1 ps and 1.4 ± 0.1 ps for multilayer epitaxial graphene and monolayer CVD graphene, respectively. These values represent lower limits on the optical phonon lifetime for the graphene samples.  相似文献   

14.
Polymer composites of a polyester resin matrix filled with short palm tree lignocellulosic fibers were studies by means of dielectric spectroscopy in the frequency range 0, 1–100 kHz and temperature interval from 40 °C to 200 °C. Three relaxations processes were identified, namely the orientation polarization imputed to the presence of polar water molecules in Palm fiber, the relaxation process associated with conductivity occurring as a result of the carriers charges diffusion noted for high temperature above glass transition and low frequencies, and the interfacial relaxation that is attributable to the accumulation of charges at the Palm fibers/polyester interfaces.  相似文献   

15.
《Applied Acoustics》2007,68(11-12):1439-1458
Measurements of the two characteristic lengths of 6 glass wool samples (with flow resistivities between 11,900 and 69,900 Pa s m−2) and 6 polyester fibre samples (with flow resistivities between 4100 and 51,000 Pa s m−2) have been made. These data have been used to determine the cross-sectional shape factors which are related to the characteristic lengths introduced by Allard. By using the formulas due to Bies and Allard, it has been found that the two characteristic lengths of the glass wool samples can be independently predicted from the glass fibre diameter. In respect to polyester fibre samples, a new relation between the flow resistivity, the fibre diameter and the bulk density has been proposed and examined. The accuracy of the predictions of the non-acoustical parameters has been confirmed by the measurements and predictions of the absorption coefficient using the Delany and Bazley and Allard models.  相似文献   

16.
《Current Applied Physics》2010,10(3):813-816
Ag films were deposited on Al-doped ZnO (AZO) films and coated with AZO to fabricate AZO/Ag/AZO multilayer films by DC magnetron sputtering on glass substrates without heating of glass substrates. The best multilayer films have low sheet resistance of 19.8 Ω/Sq and average transmittance values of 61% in visible region. It was found that the highest figure of merit (FTC) is 6.9 × 10−4 Ω−1. For the dye-sensitized solar cell (DSSC) application, the multilayer films were used as transparent conductive electrode (multilayer films/ZnO + Eosin-Y/LiI + I2/Pt/FTO). The best DSSC based on the multilayer films showed that open circuit voltage (Voc) of 0.47 V, short circuit current density (Jsc) of 2.24 mA/cm2, fill factor (FF) of 0.58 and incident photon-to-current conversion efficiency (η) of 0.61%. It was shown that the AZO/Ag/AZO multilayer films have potential for application in DSSC.  相似文献   

17.
Antireflection coating on silicon optics have crucial importance in thermal device working in 3.6–4.9 μm wavelength region. When the thermal device is used in marine environment, the optics face harsh saline weather condition compared to normal field environment. This deteriorates coated optics and to improve mechanical strength of the coating, a nanotop layer on the antireflection coating has been developed. In this paper a study has been carried out to improve marine environment compatibility by employing a nanolayer on the top of antireflection coating on silicon optics. Optimac synthesis method was used to design the multilayer stack on the substrate with germanium and IR-F625 as high/low refractive index respectively and the layer number was restricted to four layers. The top nanolayer was 60 ± 2 nm thick hafnium dioxide layer developed with ion assisted deposition (End–Hall) on the optics during coating process. The deposition of multilayer coating was carried out inside the coating plant fitted with cryo pump and residual gas analyzer. The evaporation was carried out at high vacuum (2–6 × 10−6 mbar) using electron beam gun and layer thicknesses were measured with crystal monitor. The average transmission achieved was 97% in the spectral band of 3.6–4.9 μm with a hardness of 9.7 GPa on the coated optics.  相似文献   

18.
We present a uniplanar coplanar-waveguide 3-dB tandem coupler operating at V-band frequencies. The uniplanar structure is monolithically fabricated by using two-section parallel-coupled lines and air-bridge crossovers replacing the conventional multilayer or bonded structures. Due to an optimized tandem structure and non-bonded crossovers minimizing the parasitic components, a maximum coupling of 2.5 dB is measured at 62 GHz with a 2 dB bandwidth of 83%, while a high directivity factor of 33 dB is simultaneously obtained at 58–62 GHz. Over the entire design frequency range of 30–90 GHz, we achieve good phase unbalance of 90 ± 6.0°, as well as return loss and isolation lower than −23 and −16 dB, respectively.  相似文献   

19.
The present work reports on the process of modeling chairs and occupants to closely approximate the sound absorption of occupied full scale theatre chairs and explains how the best form of model listener was determined. Modifying the form of the model listeners to have shorter upper legs and narrower lower legs, led to improved agreement between model and full scale occupied chairs at all frequencies including at 125 Hz. The measured absorption coefficients of single blocks of model chairs with or without model listeners agreed well with the measured values for both full scale types E and G chairs. However, the estimated values for larger sample blocks of model chairs with P/A = 0.5 m−1 showed better agreement with the measured values for full scale type G chairs than type E chairs due to the different slopes of the regression lines versus P/A. The present results demonstrate that the model chair and listener accurately simulate the sound absorption characteristics of a particular type of quite absorptive full scale occupied chairs for all sample sizes of the full scale chairs.  相似文献   

20.
Metal–insulator–semiconductor structures based on n-Hg1−xCdxTe (x = 0.19–0.25) were grown by molecular-beam epitaxy on the GaAs (0 1 3) substrates. Near-surface graded-gap layers with high CdTe content were formed on both sides of the epitaxial HgCdTe. Admittance of these structures was studied experimentally in a wide temperature range (8–150) K. It is shown that an increase in the composition of the working layer and a decrease in temperature lead to a decrease in the frequency of transition to high-frequency behavior of the capacitance–voltage characteristics. The differential resistance of space charge region in the strong inversion increases with the composition of the working layer and for x = 0.22 and 0.25, the differential resistance is limited by the Shockley-Read generation. The values of the differential resistance of space charge region at different frequencies and temperatures were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号