共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In droplet-based microfluidic platforms, precise separation of microscale droplets of different chemical composition is increasingly necessary for high-throughput combinatorial chemistry in drug discovery and screening assays. A variety of droplet sorting methods have been proposed, in which droplets of the same kind are translocated. However, there has been relatively less effort in developing techniques to separate the uniform-sized droplets of different chemical composition. Most of the previous droplet sorting or separation techniques either rely on the droplet size for the separation marker or adopt on-demand application of a force field for the droplet sorting or separation. The existing droplet microfluidic separation techniques based on the in-droplet chemical composition are still in infancy because of the technical difficulties. In this study, we propose an acoustofluidic method to simultaneously separate microscale droplets of the same volume and dissimilar acoustic impedance using ultrasonic surface acoustic wave (SAW)-induced acoustic radiation force (ARF). For extensive investigation on the SAW-induced ARF acting on both cylindrical and spherical droplets, we first performed a set of the droplet sorting experiments under varying conditions of acoustic impedance of the dispersed phase fluid, droplet velocity, and wave amplitude. Moreover, for elucidation of the underlying physics, a new dimensionless number ARD was introduced, which was defined as the ratio of the ARF to the drag force acting on the droplets. The experimental results were comparatively analyzed by using a ray acoustics approach and found to be in good agreement with the theoretical estimation. Based on the findings, we successfully demonstrated the simultaneous separation of uniform-sized droplets of the different acoustic impedance under continuous application of the acoustic field in a label-free and detection-free manner. Insomuch as on-chip, precise separation of multiple kinds of droplets is critical in many droplet microfluidic applications, the proposed acoustofluidic approach will provide new prospects for microscale droplet separation. 相似文献
3.
为实现水平剪切声表面波压力传感器低损耗设计,系统研究了均匀叉指换能器(IDT)和单相单向换能器(SPUDT)器件的声波能量损耗性能。在确定最优反射系数的SPUDT结构的基础上,建立3D周期性有限元仿真模型,计算器件表面振动位移和双向输出电压瞬态响应。通过对电压信号进行傅里叶变换获得器件模型的插入损耗,并制备两种不同换能器的声学传感器,测试其频率特性和灵敏度。与均匀IDT相比,基于SPUDT器件插入损耗的仿真和实验结果分别降低了5.2 dB和5.6 dB,SPUDT器件灵敏度约为均匀IDT器件的两倍。结果表明,SPUDT能有效降低SH-SAW压力传感器声波能量的单向损耗,提高检测灵敏度,且构建的3D周期性有限元仿真模型有助于声学传感器的声波损耗分析,实现高精度和小型化的声学测量系统。 相似文献
4.
Underwater reverberation environments that satisfy the conditions of uniformity and isotropy of the diffuse field can be used to measure the acoustic characteristics of underwater targets. This study combines two practical indicators — the standard deviation of the absolute sound pressure field (to indicate uniformity) and the analysis of the wavenumber spectrum in the spherical harmonics domain (to indicate isotropy) — for an accurate evaluation of the diffusion of the sound field in a reverberation tank. A method is proposed that can improve the narrow-band diffusion of the sound field by employing a randomly fluctuating surface. An acoustic experiment was performed in a reverberation water tank (1.2 m×1 m×0.8 m), where a randomly fluctuating surface was generated by making waves. The experimental results show that as the wave motion contributes effectively to the random reflection of sound rays in all directions, the uniformity and isotropy are improved significantly when the surface is fluctuating randomly. This work helps to ensure accurate measurements of the characteristics of underwater targets in reverberation tanks. 相似文献
5.
This paper is aimed to investigate the structural-borne acoustics analysis and multi-objective optimization of an enclosed box structure by using the panel acoustic participation (PAP) and response surface methodology (RSM). The acoustic frequency response function is applied to achieve the critical frequency of interest under each excitation. The PAP analysis is then carried out at all critical frequencies and the remarkable acoustic panels are identified. The correlation coefficient matrix method is proposed for reselecting and grouping the positions of acoustic panels identified to paste damping layer to control noise. With the help of faced central composite design, an efficient set of sample points are generated and then the second-order polynomial functions of sound pressure response at each critical frequency are computed and verified by the adjusted coefficient of multiple determination. The functional relationships between sound pressure responses and the thicknesses of damping layers are investigated, and multi-objective optimization of the thicknesses of damping layers is developed. The results indicate that, by using the PAP and RSM, the structural-borne acoustics at critical frequencies are calculated conveniently and controlled effectively. The optimization process of the explicit optimization model proposed in this paper is simple and the computational time is saved. 相似文献
6.
为获得传感器的优化设计,对一种声表面波梁式加速度传感器敏感机理进行了研究。从声波波动方程出发,结合有限元分析以及微扰理论对加速度作用力作用下声表面波传播特性进行分析,以此构建梁式声表面波加速度传感器敏感机理的理论模型,特别分析了压电梁材料及几何结构、振子质量对传感响应的贡献以确定传感器优化的几何参数。为验证理论分析结果,实验研制了基于ST-X石英悬臂梁结构的差分振荡式声表面波加速度传感器,并利用精密振动台对所研制传感器性能进行评价。实验结果显示,在给定加速度测试范围内,采用ST-X石英梁并延长梁长度、降低梁厚度以及采用较大的阵子质量将有效的改善传感器检测灵敏度,在±2 g范围内加速度灵敏度可达27 k Hz/g,且实验结果很好的验证了理论模型。 相似文献
7.
The acousto-optic interaction with leaky surface acoustic wave radiation into the bulk of YX-cut LiTaO3 crystals has been investigated. The light incidence and diffraction angles corresponding to the strongest acousto-optic interaction were calculated and measured as functions of the acoustic wave frequency. The dependencies of the diffracted light intensity on the amplitude of radio-frequency voltage applied to the interdigital transducer (IDT) were studied. Our acousto-optic measurements revealed generation, by the IDTs, of slow shear bulk acoustic waves propagating at different angles depending on their frequency. A secondary acousto-optic interaction from the bulk waves radiated by the receiving IDT has been studied. 相似文献
8.
采用激光干涉方法对水下声辐射激励水表面声波的特征参数频率和振幅进行了测量研究。从理论上对水表面声波激光相干测量信号的频谱构成进行了分析,在此基础上提出了水表面声波两个重要声学参数频率和振幅的解算方法,并通过数值仿真进行了验证。搭建了一套简单的激光干涉测量实验系统,对不同频率和声压激励的水表面声波进行了测量实验,验证了水表面声波频率和振幅解调方法的准确性。对水表面声波横向传播的振幅衰减现象进行了初步的实验研究,结果表明水表面声波的频率越高,振幅的横向衰减越快。研究表明激光相干检测方法能够准确地实现水表面声波振幅和频率的测量。 相似文献
9.
基于递归刚度矩阵方法, 建立了多层结构声表面波表面有效介电常数模型, 计算出了ZnO/Si结构声表面波的相速度频散特性, 与实验结果符合较好, 表明本文所建模型的准确性和有效性. 进一步计算得到了三层结构(ZnO/Diamond/Si)声表面波的相速度和机电耦合系数的频散规律, 获得此结构最优的高波速和高机电耦合系数组合及达到最优组合所需控制的变量, 为高频高性能声表面波器件设计和优化提供了有益参考.
关键词:
声表面波
多层结构
递归刚度矩阵
表面有效介电常数 相似文献
10.
表面粗糙是材料制造过程中必有的副产物, 粗糙表面会引起其中传播的声表面波的速度发生变化. 在利用激光声表面波对材料性质进行评估时, 常用宽带的激光声表面波速度频散特性对材料性质进行反演. 为了研究表面粗糙度是否能作为反演的特征参数之一, 本文建立了激光在表面粗糙样品中激发声表面波、聚偏氟乙烯换能器宽带接收声表面波的实验装置来研究不同粗糙度表面对声表面波速度的影响; 理论上建立了激光在粗糙表面中激发声表面波的计算模型, 利用有限元法得到声表面波的时域特征, 并进一步得到声表面波的速度色散曲线, 理论结果和实验结果能很好地拟合. 这为利用激光声表面波对表面粗糙的评估提供理论和实验依据.
关键词:
表面粗糙
激光声表面波
速度色散
聚偏氟乙烯传感器
有限元法 相似文献
11.
SH surface acoustic wave (SH-SAW) propagation in a cylindrically layered magneto-electro-elastic structure is investigated analytically, where a piezomagnetic (or piezoelectric) material layer is bonded to a piezoelectric (or piezomagnetic) substrate. By means of transformation, the governing equations of the coupled waves are reduced to Bessel equation and Laplace equation. The boundary conditions imply that the displacements, shear stresses, electric potential, and electric displacements are continuous across the interface between the layer and the substrate together with the traction free at the surface of the layer. The magneto-electrically open and shorted conditions at cylindrical surface are taken to solve the problem. The phase velocity is numerically calculated for different thickness of the layer and wavenumber for piezomagnetic ceramics CoFe2O4 and piezoelectric ceramics BaTiO3. The effects of magnetic permeability on propagation properties of SH-SAW are discussed in detail. The distributions of displacement, magnetic potential and magneto-electromechanical coupling factor are also figured and discussed. 相似文献
12.
In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different
phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the
symmetry of modes and frequency behavior will be modified, thus producing different features for engineering applications
such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing
a layered structure with desired material properties that can produce these effects in terms of velocity and displacements,
since Rayleigh waves in a solid with general material property grading schemes are difficult to analyze with known methods.
Solutions from layered structures with exponential and polynomial property grading schemes are obtained from the layered model
and comparisons with known analytical results are made to validate the method and examine possible applications of such structures
in engineering.
Supported by the National Natural Science Foundation of China (Grant Nos. 10432030, 10125209, and 10572065) and the Teaching
and Research Award Program for Outstanding Young Teachers in Higher Education Institutions, Ministry of Education of China,
and also supported by Qianjiang River Fellow Fund established by Zhejiang Provincial Government and Ningbo University and
administered by Ningbo University, Zhejiang, China 相似文献
13.
Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers 下载免费PDF全文
Temperature and strain sensitivities of surface acoustic wave (SAW) and hybrid acoustic wave (HAW) Brillouin scattering (BS) in 1 μm-1.3 μm diameter optical microfibers are simulated. In contrast to stimulated Brillouin scattering (SBS) from bulk acoustic wave in standard optical fiber, SAW and HAW BS, due to SAWs and HAWs induced by the coupling of longitudinal and shear waves and propagating along the surface and core of microfiber respectively, facilitate innovative detection in optical microfibers sensing. The highest temperature and strain sensitivities of the hybrid acoustic modes (HAMs) are 1.082 MHz/℃ and 0.0289 MHz/με, respectively, which is suitable for microfiber sensing application of high temperature and strain resolutions. Meanwhile, the temperature and strain sensitivities of the SAMs are less affected by fiber diameter changes, ranging from 0.05 MHz/℃/μ to 0.25 MHz/℃/μ and 1×10-4 MHz/με/μ to 5×10-4 MHz/με/μ, respectively. It can be found that that SAW BS for temperature and strain sensing would put less stress on manufacturing constraints for optical microfibers. Besides, the simultaneous sensing of temperature and strain can be realized by SAW and HAW BS, with temperature and strain errors as low as 0.30 ℃-0.34 ℃ and 14.47 με-16.25 με. 相似文献
14.
《Photonics and Nanostructures》2014,12(3):239-251
We show theoretically that in elastic layered structures containing an upper layer of smoothly varied thickness and a substrate of a highly dispersive metametarial it is possible to significantly enhance spatial frequency separation of surface acoustic waves. Theory of Love surface acoustic waves propagation in waveguides with varied thickness, taking into account mutual modes coupling, is built. Appropriate structure of metamatererial with resonant frequency dependence of material parameters, making frequency separation effective, is provided. Efficiency of spatial frequency separation and modes coupling is calculated for various metamaterial parameters and wave frequencies. 相似文献
15.
It is generally known that surface acoustic waves, or Rayleigh waves, have different mode shapes in infinite plates. To be
precise, there are both exponentially decaying and growing components in plates appearing in pairs, representing symmetric
and antisymmentric modes in a plate. As the plate thickness increases, the combined modes will approach the Rayleigh mode
in a semi-infinite solid, exhibiting surface acoustic wave deformation and velocity. In this study, the two-dimensional theory
for surface acoustic waves in finite plates is extended to include the exponentially growing modes in the expansion function.
With these extra equations, we study the surface acoustic waves in a plate with different thickness to examine the coupling
of the exponentially decaying and growing modes. It is found that for small thickness, the two groups of waves are strongly
coupled, showing the significance of including the effect of thickness in analysis. As the thickness increases to certain
values, such as more than five wavelengths, the exponentially decaying modes alone will be able to predict vibrations of surface
acoustic wave modes accurately, thus simplifying the equations and solutions significantly.
Supported by Qianjiang River Fund established by Zhejiang Provincial Government and Ningbo University and administered by
Ningbo University and the National Natural Science Foundation of China (Grant No. 10572065) 相似文献
16.
开展了用于新型激光驱动马达的环形定子的激光致表面波机理及实验研究. 提出一种带有凹槽阵列结构的环形定子新设计, 建立了激光在环形定子表面激发表面波的物理模型, 揭示了影响表面波幅值的关键因素; 采用一种新颖的激光致表面波可视化探测方法, 在波长1053 nm, 脉宽30 ns, 单脉冲能量1 mJ的激光激发下, 对表面波在铜质环形定子表面的传播特性进行了可视化探测实验. 理论与实验研究表明: 当激发光斑的位置紧邻凹槽阵列时, 沿着圆环向凹槽方向传播的表面波会被齿状凹槽阵列迅速衰减和吸收, 而沿着圆环向远离凹槽方向传播的表面波能够持续传递, 从而首次实现了激光致表面波在环形定子上的单向传播; 而对没有凹槽阵列结构的圆环进行的对比实验表明, 激光致表面波在圆环表面双向传播, 最终因相互混叠和串扰等而处于混乱状态. 由激光在该种环形定子表面激发出的单向表面波, 可望在光致表面波马达及驱动机构中获得应用.
关键词:
激光致表面波
环形定子
表面波可视化
激光驱动 相似文献
17.
结合声表面波和光致发光谱在低温(15K)下对非故意掺杂的GaAs(110)量子阱结构的发光特性进行了研究.实验结果表明,由于声表面波的作用GaAs(110)量子阱的发光强度减弱,并且其对应的重空穴能级出现了分裂的现象,当施加的声波强度Prf达到20dBm时,能级分裂ΔE达到了10meV.进一步讨论了声表面波对GaAs(110)量子阱圆偏振光自旋注入的影响.
关键词:
发光
GaAs量子阱
声表面波
自旋极化 相似文献
18.
J. T. Luo P. Fan F. Pan F. Zeng D. P. Zhang Z. H. Zheng G. X. Liang X. M. Cai 《固体物理学:研究快报》2012,6(11):436-438
Surface acoustic wave (SAW) filters based on Mn‐doped ZnO films have been fabricated and effects of Mn‐doping on SAW properties are investigated. It is found that the electromechanical coupling coefficient (K2) of Zn0.913Mn0.087O films is 0.73 ± 0.02%, which is 73.8% larger than that of undoped ZnO films (0.42 ± 0.02%). Zn0.913Mn0.087O film filters also exhibit a lower absolute value of insertion loss (|IL|) of 16.1 dB and larger bandwidth (BW) of 5.9 MHz compared with that of undoped ZnO film filter. However, Zn0.952Mn0.048O film filters exhibit a smaller K2 of 0.34 ± 0.02%, larger |IL| of 26.9 dB and smaller BW of 3.5 MHz. It is suggested that the SAW properties can be improved by appropriate Mn‐doping and Mn–ZnO/Si multilayer structure with large d33 is promising for wide‐band and low‐loss SAW applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
The electromechanical coupling coefficient of Rayleigh-type surface acoustic waves in semi-infinite piezoelectrics/non-piezoelectrics superlattices is investigated by the transfer matrix method. Research results show the high electromechanical coupling coefficient can be obtained in these systems. The optimization design of it is also discussed fully. It is significantly influenced by electrical boundary conditions on interfaces, thickness ratios of piezoelectric and non-piezoelectric layers, and material parameters (such as velocities of pure longitudinal and transversal bulk waves in non-piezoelectric layers). In order to obtain higher electromechanical coupling coefficient, shorted interfaces, non-piezoelectric materials with large velocities of longitudinal and transversal bulk waves, and proper thickness ratios should be chosen. 相似文献
20.
通过采用将入射光掠入射到频率为几百赫兹的衰减低频液体表面波上,观察到了清晰的间距分布具有明显非对称性的衍射条纹。当入射光掠入射到低频液体表面上时,衍射图样非对称分布具有普遍性。理论上得到了考虑表面波衰减影响后观察屏处衍射光强分布的解析表达式。理论结果表明:衍射图样的这种非对称分布与衍射级次、入射光波波长、液体表面波波长及表面波衰减系数有关;正负级次衍射亮条纹距离中央零级亮条纹的间距体现表面波衰减信息;正衍射级次之间以及负衍射级次之间的条纹间距体现表面波波长信息。利用所提出的方法实现了对几百赫兹液体表面波的衰减系数的实时便捷测量。 相似文献