首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the influence of signal-to-noise ratio in the early failure stage of rolling bearings in rotating machinery, it is difficult to effectively extract feature information. Variational Mode Decomposition (VMD) has been widely used to decompose vibration signals which can reflect more fault omens. In order to improve the efficiency and accuracy, a method to optimize VMD by using the Niche Genetic Algorithm (NGA) is proposed in this paper. In this method, the optimal Shannon entropy of modal components in a VMD algorithm is taken as the optimization objective, by using the NGA to constantly update and optimize the combination of influencing parameters composed of α and K so as to minimize the local minimum entropy. According to the obtained optimization results, the optimal input parameters of the VMD algorithm were set. The method mentioned is applied to the fault extraction of a simulated signal and a measured signal of a rolling bearing. The decomposition process of the rolling-bearing fault signal was transferred to the variational frame by the NGA-VMD algorithm, and several eigenmode function components were obtained. The energy feature extracted from the modal component containing the main fault information was used as the input vector of a particle swarm optimized support vector machine (PSO-SVM) and used to identify the fault type of the rolling bearing. The analysis results of the simulation signal and measured signal show that: the NGA-VMD algorithm can decompose the vibration signal of a rolling bearing accurately and has a better robust performance and correct recognition rate than the VMD algorithm. It can highlight the local characteristics of the original sample data and reduce the interference of the parameters selected artificially in the VMD algorithm on the processing results, improving the fault-diagnosis efficiency of rolling bearings.  相似文献   

2.
In order to detect the incipient fault of rolling bearings and to effectively identify fault characteristics, based on amplitude-aware permutation entropy (AAPE), an enhanced method named hierarchical amplitude-aware permutation entropy (HAAPE) is proposed in this paper to solve complex time series in a new dynamic change analysis. Firstly, hierarchical analysis and AAPE are combined to excavate multilevel fault information, both low-frequency and high-frequency components of the abnormal bearing vibration signal. Secondly, from the experimental analysis, it is found that HAAPE is sensitive to the early failure of rolling bearings, which makes it suitable to evaluate the performance degradation of a bearing in its run-to-failure life cycle. Finally, a fault feature selection strategy based on HAAPE is put forward to select the bearing fault characteristics after the application of the least common multiple in singular value decomposition (LCM-SVD) method to the fault vibration signal. Moreover, several other entropy-based methods are also introduced for a comparative analysis of the experimental data, and the results demonstrate that HAAPE can extract fault features more effectively and with a higher accuracy.  相似文献   

3.
The complex and harsh working environment of rolling bearings cause the fault characteristics in vibration signal contaminated by the noise, which make fault diagnosis difficult. In this paper, a feature enhancement method of rolling bearing signal based on variational mode decomposition with K determined adaptively (K-adaptive VMD), and radial based function fuzzy entropy (RBF-FuzzyEn), is proposed. Firstly, a phenomenon called abnormal decline of center frequency (ADCF) is defined in order to determine the parameter K of VMD adaptively. Then, the raw signal is separated into K intrinsic mode functions (IMFs). A coefficient En for selecting optimal IMFs is calculated based on the center frequency bands (CFBs) of all IMFs and frequency spectrum for original signal autocorrelation operation. After that, the optimal IMFs of which En are bigger than the threshold are selected to reconstruct signal. Secondly, RBF is introduced as an innovative fuzzy function to enhance the feature discrimination of fuzzy entropy between bearings in different states. A specific way for determination of parameter r in fuzzy function is also presented. Finally, RBF-FuzzyEn is used to extract features of reconstructed signal. Simulation and experiment results show that K-adaptive VMD can effectively reduce the noise and enhance the fault characteristics; RBF-FuzzyEn has strong feature differentiation, superior noise robustness, and low dependence on data length.  相似文献   

4.
This paper proposes a multi-fault detection method based on the adaptive spectral kurtosis (ASK) analysis of the vibration signal from single sensor. A theoretical model of multiple bearing faults is established in this paper. Compared with the kurtogram and protrugram techniques, the proposed method can more effectively extract signatures of multiple bearing faults even in the presence of strong background noise. The performance of the proposed method in fault detection of the rolling element bearings is validated using simulation data and experimental signals from a bearing with multiple faults and two faulty bearings.  相似文献   

5.
提出了一种基于粒子滤波状态估计的滚动轴承故障识别方法,该方法主要包括故障模型建立和故障识别两个步骤。在故障模型建立部分,首先依据滚动轴承不同故障状态下的振动信号,建立对应的自回归模型,作为故障模型;在故障识别部分,将正常状态下对应的模型,转化为状态空间模型,设计粒子滤波器,然后对不同的故障状态进行估计,提取其残差的相关特征,并结合模型参数特征应用BP神经网络识别算法进行故障识别。最后以美国凯斯西储大学的滚动轴承振动数据为例,验证了该方法的有效性。  相似文献   

6.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

7.
A vibration signal collected from a complex machine consists of multiple vibration components, which are system responses excited by several sources. This paper reports a new blind component separation (BCS) method for extracting different mechanical fault features. By applying the proposed method, a single-channel mixed signal can be decomposed into two parts: the periodic and transient subsets. The periodic subset is related to the imbalance, misalignment and eccentricity of a machine. The transient subset refers to abnormal impulsive phenomena, such as those caused by localized bearing faults. The proposed method includes two individual strategies to deal with these different characteristics. The first extracts the sub-Gaussian periodic signal by minimizing the kurtosis of the equalized signals. The second detects the super-Gaussian transient signal by minimizing the smoothness index of the equalized signals. Here, the equalized signals are derived by an eigenvector algorithm that is a successful solution to the blind equalization problem. To reduce the computing time needed to select the equalizer length, a simple optimization method is introduced to minimize the kurtosis and smoothness index, respectively. Finally, simulated multiple-fault signals and a real multiple-fault signal collected from an industrial machine are used to validate the proposed method. The results show that the proposed method is able to effectively decompose the multiple-fault vibration mixture into periodic components and random non-stationary transient components. In addition, the equalizer length can be intelligently determined using the proposed method.  相似文献   

8.
This paper introduces an automatic feature extraction algorithm for bearing fault diagnosis using correlation filtering-based matching pursuit. This algorithm is described and investigated in theory and practice on both simulated and real bearing vibration signals. First, the vibration model for rolling bearing with fault is derived. Then, the numerical simulation signal being taken as an example, the principle of matching pursuit is mathematically explained and its drawbacks are analyzed. Afterward, to enhance the similarity of model related to the bearing faulty impulses, the model shape parameters are optimized using spectrum kurtosis and smoothing index. After that, the model with optimum shape and period parameters is taken as a template to approximate the impulses in faulty bearing signal. Finally, based on maximizing correlation principle, the optimized cycle parameter being as impuls e repetition period is matched up. The proposed method has been successfully applied in actual vibration signals of rolling element bearing with different faults.  相似文献   

9.
In the fault monitoring of rolling bearings, there is always loud noise, leading to poor signal stationariness. How to accurately and efficiently identify the fault type of rolling bearings is a challenge. Based on multivariate multiscale sample entropy (mvMSE), this paper introduces the refined composite mvMSE (RCmvMSE) into the fault extraction of the rolling bearing. A rolling bearing fault-diagnosis method based on stacked auto encoder and RCmvMSE (SDAE-RCmvMSE) is proposed. In the actual environment, the fault-diagnosis method use the multichannel vibration signals of the bearing as the input of stacked denoising autoencoders (SDAEs) to filter the noise of the vibration signals. The features of denoise signals are extracted by RCmvMSE and the rolling bearing operation-state diagnosis is completed with a support-vector machine (SVM) model. The results show that in the original test data, the accuracy rates of SDAE-RCmvMSE, RCmvMSE, and commonplace features of vibration signals combined with SVM (CFVS-SVM) methods are 99.5%, 100%, and 96% respectively. In the data with noise, the accuracy rates of RCmvMSE and CFVS-SVM are 97.75% and 93.08%, respectively, but the accuracy of SDAE-RCmvMSE is still 100%.  相似文献   

10.
This paper proposes a novel fault diagnosis method for rolling bearing based on hierarchical refined composite multiscale fluctuation-based dispersion entropy (HRCMFDE) and particle swarm optimization-based extreme learning machine (PSO-ELM). First, HRCMFDE is used to extract fault features in the vibration signal at different time scales. By introducing the hierarchical theory algorithm into the vibration signal decomposition process, the problem of missing high-frequency signals in the coarse-grained process is solved. Fluctuation-based dispersion entropy (FDE) has the characteristics of insensitivity to noise interference and high computational efficiency based on the consideration of nonlinear time series fluctuations, which makes the extracted feature vectors more effective in describing the fault information embedded in each frequency band of the vibration signal. Then, PSO is used to optimize the input weights and hidden layer neuron thresholds of the ELM model to improve the fault identification capability of the ELM classifier. Finally, the performance of the proposed rolling bearing fault diagnosis method is verified and analyzed by using the CWRU dataset and MFPT dataset as experimental cases, respectively. The results show that the proposed method has high identification accuracy for the fault diagnosis of rolling bearings with varying loads and has a good load migration effect.  相似文献   

11.
The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)).  相似文献   

12.
Feature extraction plays an important role in the clustering analysis. In this paper an integrated Autoregressive (AR)/Autoregressive Conditional Heteroscedasticity (ARCH) model is proposed to characterize the vibration signal and the model coefficients are adopted as feature vectors to realize clustering diagnosis of rolling element bearings. The main characteristic is that the AR item and ARCH item are interrelated with each other so that it can depict the excess kurtosis and volatility clustering information in the vibration signal more accurately in comparison with two-stage AR/ARCH model. To testify the correctness, four kinds of bearing signals are adopted for parametric modeling by using the integrated and two-stage AR/ARCH model. The variance analysis of the model coefficients shows that the integrated AR/ARCH model can get more concentrated distribution. Taking these coefficients as feature vectors, K means based clustering is utilized to realize the automatic classification of bearing fault status. The results show that the proposed method can get more accurate results in comparison with two-stage model and discrete wavelet decomposition.  相似文献   

13.
In order to further improve the accuracy of fault identification of rolling bearings, a fault diagnosis method based on the modified particle swarm optimization (MPSO) algorithm optimized least square support vector machine (LSSVM), combining parameter optimization variational mode decomposition (VMD) and multi-scale permutation entropy (MPE), was proposed. Firstly, to solve the problem of insufficient decomposition and mode mixing caused by the improper selection of mode component K and penalty factor α in VMD algorithm, the whale optimization algorithm (WOA) was used to optimize the penalty factor and mode component number in the VMD algorithm, and the optimal parameter combination (K, α) was obtained. Secondly, the optimal parameter combination (K, α) was used for the VMD of the rolling bearing vibration signal to obtain several intrinsic mode functions (IMFs). According to the Pearson correlation coefficient (PCC) criterion, the optimal IMF component was selected, and its optimal multi-scale permutation entropy was calculated to form the feature set. Finally, K-fold cross-validation was used to train the MPSO-LSSVM model, and the test set was input into the trained model for identification. The experimental results show that compared with PSO-SVM, LSSVM, and PSO-LSSVM, the MPSO-LSSVM fault diagnosis model has higher recognition accuracy. At the same time, compared with VMD-SE, VMD-MPE, and PSO-VMD-MPE, WOA-VMD-MPE can extract more accurate features.  相似文献   

14.
This paper presents a new approach for denoising Partial Discharge (PD) signals using a hybrid algorithm combining the adaptive decomposition technique with Entropy measures and Group-Sparse Total Variation (GSTV). Initially, the Empirical Mode Decomposition (EMD) technique is applied to decompose a noisy sensor data into the Intrinsic Mode Functions (IMFs), Mutual Information (MI) analysis between IMFs is carried out to set the mode length K. Then, the Variational Mode Decomposition (VMD) technique decomposes a noisy sensor data into K number of Band Limited IMFs (BLIMFs). The BLIMFs are separated as noise, noise-dominant, and signal-dominant BLIMFs by calculating the MI between BLIMFs. Eventually, the noise BLIMFs are discarded from further processing, noise-dominant BLIMFs are denoised using GSTV, and the signal BLIMFs are added to reconstruct the output signal. The regularization parameter λ for GSTV is automatically selected based on the values of Dispersion Entropy of the noise-dominant BLIMFs. The effectiveness of the proposed denoising method is evaluated in terms of performance metrics such as Signal-to-Noise Ratio, Root Mean Square Error, and Correlation Coefficient, which are are compared to EMD variants, and the results demonstrated that the proposed approach is able to effectively denoise the synthetic Blocks, Bumps, Doppler, Heavy Sine, PD pulses and real PD signals.  相似文献   

15.
吕金龙  黄细霞  吴晓越 《应用声学》2017,25(7):43-46, 50
对起重机负载电机进行了研究,采用西门子公司的S7-200 SMART PLC采集负载电机的机械振动信号,通过工业Wi-Fi无线模块以无线数据包的形式将采集的数据汇总到上位机LabVIEW监测平台。上位机的LabVIEW监测平台对电动机振动信号进行相关性和频谱分析,将实时振动数据频谱信号和已知常见负载电机的轴承外圈故障、轴承内环故障和滚子故障三种典型的故障状态频谱信号进行相关性运算,得到实时信号与已知状态的相关系数;提出了以相关系数作为故障诊断判定阈值的方法进行故障诊断,实现了对起重机状态进行监测以及监控信息发布。  相似文献   

16.
Rolling bearings act as key parts in many items of mechanical equipment and any abnormality will affect the normal operation of the entire apparatus. To diagnose the faults of rolling bearings effectively, a novel fault identification method is proposed by merging variational mode decomposition (VMD), average refined composite multiscale dispersion entropy (ARCMDE) and support vector machine (SVM) optimized by multistrategy enhanced swarm optimization in this paper. Firstly, the vibration signals are decomposed into different series of intrinsic mode functions (IMFs) based on VMD with the center frequency observation method. Subsequently, the proposed ARCMDE, fusing the superiorities of DE and average refined composite multiscale procedure, is employed to enhance the ability of the multiscale fault-feature extraction from the IMFs. Afterwards, grey wolf optimization (GWO), enhanced by multistrategy including levy flight, cosine factor and polynomial mutation strategies (LCPGWO), is proposed to optimize the penalty factor C and kernel parameter g of SVM. Then, the optimized SVM model is trained to identify the fault type of samples based on features extracted by ARCMDE. Finally, the application experiment and contrastive analysis verify the effectiveness of the proposed VMD-ARCMDE-LCPGWO-SVM method.  相似文献   

17.
余永增 《应用声学》2018,37(6):889-894
为解决振动检测方法不能有效识别低速旋转机械滚动轴承故障问题,利用声发射检测方法,建立了滚动轴承低速声发射信号采集试验装置,对模拟人工缺陷滚动轴承声发射信号进行了采集,进而对滚动轴承声发射信号进行总体平均经验模式分解,结合能量矩及相关系数法综合判断分解后各模态分量的真伪,据此提取出特征信号并做出其局部Hilbert边际谱,最后对滚动轴承各种故障模式进行诊断。试验结果表明该诊断方法能准确识别滚动轴承声发射信号故障频率,依据特征频率及幅值大小可对低速滚动轴承故障进行有效诊断。  相似文献   

18.
Continuous online monitoring of rotating machines is necessary to assess real-time health conditions so as to enable early detection of operation problems and thus reduce the possibility of downtime. Rolling element bearings are crucial parts of many machines and there has been an increasing demand to find effective and reliable health monitoring technique and advanced signal processing to detect and diagnose the size and location of incipient defects. Condition monitoring of rolling element bearings, comprises four main stages which are, statistical analysis, fault diagnostics, defect size calculation, and prognostics. In this paper the effect of defect size, operating speed, and loading conditions on statistical parameters of acoustic emission (AE) signals, using design of experiment method (DOE), have been investigated to select the most sensitive parameters for diagnosing incipient faults and defect growth on rolling element bearings. A modified and effective signal processing algorithm is designed to diagnose localized defects on rolling element bearings components under different operating speeds, loadings, and defect sizes. The algorithm is based on optimizing the ratio of Kurtosis and Shannon entropy to obtain the optimal band pass filter utilizing wavelet packet transform (WPT) and envelope detection. Results show the superiority of the developed algorithm and its effectiveness in extracting bearing characteristic frequencies from the raw acoustic emission signals masked by background noise under different operating conditions. To experimentally measure the defect size on rolling element bearings using acoustic emission technique, the proposed method along with spectrum of squared Hilbert transform are performed under different rotating speeds, loading conditions, and defect sizes to measure the time difference between the double AE impulses. Measurement results show the power of the proposed method for experimentally measuring size of different fault shapes using acoustic emission signals.  相似文献   

19.
Vibration signal analysis is the most widely used technique in condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for rolling element bearing fault diagnosis based on near-field acoustic holography (NAH) and gray level co-occurrence matrix (GLCM) is presented in this paper. It focuses on applying the distribution information of sound field to bearing fault diagnosis. A series of rolling element bearings with different types of fault are experimentally studied. Sound fields and corresponding acoustic images in different bearing conditions are obtained by fast Fourier transform (FFT) based NAH. GLCM features are extracted for capturing fault pattern information underlying sound fields. The optimal feature subset selected by improved F-score is fed into multi-class support vector machine (SVM) for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with the traditional ABD method. Considering test cost, the quantized level and the number of GLCM features for each characteristic frequency is suggested to be 4 and 32, respectively, with the satisfactory accuracy rate 97.5%.  相似文献   

20.
Modulations present in vibration signals generated by rotating machinery might carry a lot of useful information about objects’ technical condition. It has been proven that both gearboxes and rolling element bearing (REB) faults manifest themselves as modulations. The paper describes a technique for detection of modulations in vibroacoustic signals, called modulation intensity distribution (MID), which is a function that combines multiple spectral correlation densities in one way or another, depending on the application. Additionally, the paper describes a functional obtained by integrating an MID (denoted by IMID) that has the advantage of being a function of only one frequency variable instead of two. The paper investigates the utility of the MID as an indicator for detection of the presence of rolling element bearing faults in high noise environments. For the purpose of testing, a wind turbine that suffered both advanced gearbox fault and early stage of bearing fault was chosen. Additionally, the paper undertakes the problem of application of the proposed tool in an industrial condition-monitoring system. In order to show the behavior of cyclic components generated by the turbine under study over a long period of time, the set of MIDs integrated over full range of potential carrier signals was presented as a cascade plot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号