首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Asymmetric C?H bond functionalization reaction is one of the most efficient and straightforward methods for the synthesis of optically active molecules. Herein we disclose an asymmetric C?H/C?H cross‐coupling reaction of ferrocenes with azoles such as oxazoles and thiazoles. Palladium(II)/monoprotected amino acid (MPAA) catalytic system which exhibits excellent reactivity and regioselectivity for oxazoles and thiazoles. This method offers a powerful strategy for constructing planar chiral ferrocenes. Mechanistic studies suggest that the C?H bond cleavage of azoles is likely proceeding through a SEAr process and may not be a turnover limiting step.  相似文献   

4.
5.
6.
7.
We describe here the first general asymmetric synthesis of sterically encumbered α,α‐disubstituted allylic sulfones via Pd‐catalyzed allylic substitution. The design and application of a new and highly efficient phosphoramidite ligand ( L10 ) proved to be crucial, and a wide variety of challenging allylic sulfones featuring quaternary stereocenters could be obtained in good yields and with good to excellent levels of regio‐ and enantioselectivities under attractive process conditions. The developed methodology employs easily accessible chemical feedstock including racemic allylic precursors and sodium sulfinates. The utility of the method is further demonstrated by the synthesis of the sesquiterpene (?)‐Agelasidine A.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Highly enantioselective rhodium‐catalyzed addition of arylboroxines to N‐unprotected ketimines is realized for the first time by employing chiral BIBOP‐type ligands with a Rh loading as low as 1 mol %. A range of chiral α‐trifluoromethyl‐α,α‐diaryl α‐tertiary amines or 3‐amino‐3‐aryloxindoles were formed with excellent ee values and yields by employing either WingPhos or PFBO‐BIBOP as the ligand. The method has enabled an efficient enantioselective synthesis of cipargamin.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号