首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor‐specific metabolic precursors that can generate unnatural glycans on the tumor‐cell surface. A cathepsin B‐specific cleavable substrate (KGRR) conjugated with triacetylated N‐azidoacetyl‐d ‐mannosamine (RR‐S‐Ac3ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups. The generation of azide groups on the tumor cell surface was exogenously and specifically controlled by the amount of RR‐S‐Ac3ManNAz that was fed to target tumor cells. Moreover, unnatural glycans on the tumor cell surface were conjugated with near infrared fluorescence (NIRF) dye‐labeled molecules by a bioorthogonal click reaction in cell cultures and in tumor‐bearing mice. Therefore, our RR‐S‐Ac3ManNAz is promising for research in tumor‐specific imaging or drug delivery.  相似文献   

2.
3.
4.
5.
6.
1H detection can significantly improve solid‐state NMR spectral sensitivity and thereby allows studying more complex proteins. However, the common prerequisite for 1H detection is the introduction of exchangeable protons in otherwise deuterated proteins, which has thus far significantly hampered studies of partly water‐inaccessible proteins, such as membrane proteins. Herein, we present an approach that enables high‐resolution 1H‐detected solid‐state NMR (ssNMR) studies of water‐inaccessible proteins, and that even works in highly complex environments such as cellular surfaces. In particular, the method was applied to study the K+ channel KcsA in liposomes and in situ in native bacterial cell membranes. We used our data for a dynamic analysis, and we show that the selectivity filter, which is responsible for ion conduction and highly conserved in K+ channels, undergoes pronounced molecular motion. We expect this approach to open new avenues for biomolecular ssNMR.  相似文献   

7.
8.
9.
10.
11.
Bonding in six‐coordinate complexes based on Group 13 elements (B, Al, Ga, In, Tl) is usually considered to be identical to that in transition‐metal analogues. We herein demonstrate through sophisticated electronic‐structure analyses that the bonding in these Group 13 element complexes is fundamentally different and better characterized as electron‐rich hypervalent bonding with essentially no role for the d orbitals. This characteristic is carried through to the molecular properties of the complex.  相似文献   

12.
13.
14.
15.
Widespread multidrug resistance caused by the abuse of antibiotics calls for novel strategies and materials. Gold nanoclusters (AuNCs) are scarcely explored for combating multidrug‐resistant (MDR) bacteria in vivo. We herein synthesized a novel class of AuNCs, namely quaternary ammonium (QA) capped AuNCs (QA‐AuNCs) as potent antibiotics selectively targeting MDR Gram‐positive bacteria, including methicillin‐resistant Staphylococcus aureus (MRSA) and vancomycin‐resistant Enterococci (VRE), in vivo. QA‐AuNCs kill bacteria through a combined physicochemical mechanism, and show excellent therapeutic effects in both a skin infection model and a bacteremia model induced by MRSA. In addition, owing to their intense fluorescence, QA‐AuNCs can be used for the discrimination of live/dead bacteria and bacteria counting, suggesting their potential for clinical theranostics.  相似文献   

16.
17.
Short and highly stereoselective total syntheses of the sesquilignan natural product tatanan A and its C3 epimer are described. An assembly‐line synthesis approach, using iterative lithiation–borylation reactions, was applied to install the three contiguous stereocenters with high enantio‐ and diastereoselectivity. One of the stereocenters was installed using a configurationally labile lithiated primary benzyl benzoate, resulting in high levels of substrate‐controlled (undesired) diastereoselectivity. However, reversal of selectivity was achieved by using a novel diastereoselective Matteson homologation. Stereospecific alkynylation of a hindered secondary benzylic boronic ester enabled completion of the synthesis in a total of eight steps.  相似文献   

18.
19.
To improve the bioimaging signal‐to‐noise ratio (SNR), long‐term imaging capability, and decrease the potential biotoxicity, an in vivo cross‐linking strategy was developed by using sub‐10 nm, glutathione‐modified, lanthanide nanoprobes. After administration, the nanoprobes cross‐link in response to reactive oxygen species (ROS) at the inflamed area and enable the quick imaging of ROS in the second near‐infrared (NIR‐II) window. These nanoprobes could be rapidly excreted due to their ultra‐small size. This strategy may also be applied to other ultra‐small contrast agents for the precise bioimaging by in situ lesion cross‐linking.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号