首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper proposes a multi-fault detection method based on the adaptive spectral kurtosis (ASK) analysis of the vibration signal from single sensor. A theoretical model of multiple bearing faults is established in this paper. Compared with the kurtogram and protrugram techniques, the proposed method can more effectively extract signatures of multiple bearing faults even in the presence of strong background noise. The performance of the proposed method in fault detection of the rolling element bearings is validated using simulation data and experimental signals from a bearing with multiple faults and two faulty bearings.  相似文献   

2.
Rolling bearing faults are one of the major reasons for breakdown of industrial machinery and bearing diagnosing is one of the most important topics in machine condition monitoring.The main problem in industrial application of bearing vibration diagnostics is the masking of informative bearing signal by machine noise. The vibration signal of the rolling bearing is often covered or concealed by other structural vibrations sources, such as gears. Although a number of vibration diagnostic techniques have been developed over the last several years, in many cases these methods are quite complicated in use or only effective at later stages of damage development. This paper presents an EMD-based rolling bearing diagnosing method that shows potential for bearing damage detection at a much earlier stage of damage development.By using EMD a raw vibration signal is decomposed into a number of Intrinsic Mode Functions (IMFs). Then, a new method of IMFs aggregation into three Combined Mode Functions (CMFs) is applied and finally the vibration signal is divided into three parts of signal: noise-only part, signal-only part and trend-only part. To further bearing fault-related feature extraction from resultant signals, the spectral analysis of the empirically determined local amplitude is used. To validate the proposed method, raw vibration signals generated by complex mechanical systems employed in the industry (driving units of belt conveyors), including normal and fault bearing vibration data, are used in two case studies. The results show that the proposed rolling bearing diagnosing method can identify bearing faults at early stages of their development.  相似文献   

3.
The health condition of the rolling bearing seriously affects the operation of the whole mechanical system. When the rolling bearing parts fail, the time series collected in the field generally shows strong nonlinearity and non-stationarity. To obtain the faulty characteristics of mechanical equipment accurately, a rolling bearing fault detection technique based on k-optimized adaptive local iterative filtering (ALIF), improved multiscale permutation entropy (improved MPE), and BP neural network was proposed. In the ALIF algorithm, a k-optimized ALIF method based on permutation entropy (PE) is presented to select the number of ALIF decomposition layers adaptively. The completely average coarse-graining method was proposed to excavate more hidden information. The performance analysis of the simulation signal shows that the improved MPE can more accurately dig out the depth information of the time series, and the entropy value obtained is more consistent and stable. In the research application, rolling bearing time series are decomposed by k-optimized ALIF to obtain a certain number of intrinsic mode functions (IMFs). Then the improved MPE value of effective IMF is calculated and input into backpropagation (BP) neural network as the feature vector for automatic fault identification. The comparative analysis of simulation signals shows that this method can extract fault information effectively. At the same time, the experimental part shows that this scheme not only effectively extracts the fault features, but also realizes the classification and identification of different fault modes and faults of different degrees, which has a certain application prospect in the research and application direction of rolling bearing fault identification.  相似文献   

4.
This paper presents a novel feature extraction scheme for roller bearing fault diagnosis utilizing generalized S transform and two-dimensional non-negative matrix factorization (2DNMF). The generalized S transform, which can make up the poor energy concentration of the standard S transform, is introduced to generate the time-frequency representation (TFR). Experiment results on simulated signal and vibration signals measured from rolling element bearings have revealed that the generalized S transform can obtain a more satisfactory TFR than other similar techniques. Furthermore, a new technique called two-dimensional non-negative matrix factorization (2DNMF), which can reduce the computation cost and preserve more structure information hiding in original 2D matrices compared to the NMF, is developed to extract more informative features from the time-frequency matrixes for accurate fault classification. Experimental results on bearing faults classification have demonstrated that the proposed feature extraction scheme has an advantage over other similar feature extraction approaches.  相似文献   

5.
This paper introduces an automatic feature extraction algorithm for bearing fault diagnosis using correlation filtering-based matching pursuit. This algorithm is described and investigated in theory and practice on both simulated and real bearing vibration signals. First, the vibration model for rolling bearing with fault is derived. Then, the numerical simulation signal being taken as an example, the principle of matching pursuit is mathematically explained and its drawbacks are analyzed. Afterward, to enhance the similarity of model related to the bearing faulty impulses, the model shape parameters are optimized using spectrum kurtosis and smoothing index. After that, the model with optimum shape and period parameters is taken as a template to approximate the impulses in faulty bearing signal. Finally, based on maximizing correlation principle, the optimized cycle parameter being as impuls e repetition period is matched up. The proposed method has been successfully applied in actual vibration signals of rolling element bearing with different faults.  相似文献   

6.
Continuous online monitoring of rotating machines is necessary to assess real-time health conditions so as to enable early detection of operation problems and thus reduce the possibility of downtime. Rolling element bearings are crucial parts of many machines and there has been an increasing demand to find effective and reliable health monitoring technique and advanced signal processing to detect and diagnose the size and location of incipient defects. Condition monitoring of rolling element bearings, comprises four main stages which are, statistical analysis, fault diagnostics, defect size calculation, and prognostics. In this paper the effect of defect size, operating speed, and loading conditions on statistical parameters of acoustic emission (AE) signals, using design of experiment method (DOE), have been investigated to select the most sensitive parameters for diagnosing incipient faults and defect growth on rolling element bearings. A modified and effective signal processing algorithm is designed to diagnose localized defects on rolling element bearings components under different operating speeds, loadings, and defect sizes. The algorithm is based on optimizing the ratio of Kurtosis and Shannon entropy to obtain the optimal band pass filter utilizing wavelet packet transform (WPT) and envelope detection. Results show the superiority of the developed algorithm and its effectiveness in extracting bearing characteristic frequencies from the raw acoustic emission signals masked by background noise under different operating conditions. To experimentally measure the defect size on rolling element bearings using acoustic emission technique, the proposed method along with spectrum of squared Hilbert transform are performed under different rotating speeds, loading conditions, and defect sizes to measure the time difference between the double AE impulses. Measurement results show the power of the proposed method for experimentally measuring size of different fault shapes using acoustic emission signals.  相似文献   

7.
Stochastic resonance (SR), a noise-assisted tool, has been proved to be very powerful in weak signal detection. The multiscale noise tuning SR (MSTSR), which breaks the restriction of the requirement of small parameters and white noise in classical SR, has been applied to identify the characteristic frequency of a bearing. However, the multiscale noise tuning (MST), which is originally based on discrete wavelet transform (DWT), limits the signal-to-noise ratio (SNR) improvement of SR and the performance in identifying multiple bearing faults. In this paper, the wavelet packet transform (WPT) is developed and incorporated into the MSTSR method to overcome its shortcomings and to further enhance its capability in multiple faults detection of bearings. The WPT-based MST can achieve a finer tuning of multiscale noise and aims at detecting multiple target frequencies separately. By introducing WPT into the MST of SR, this paper proposes an improved SR method particularly suited for the identification of multiple transient faults in rolling element bearings. Simulated and practical bearing signals carrying multiple characteristic frequencies are employed to validate the performance improvement of the proposed method as compared to the original DWT-based MSTSR method. The results confirm the good capability of the proposed method in multi-fault diagnosis of rolling element bearings.  相似文献   

8.
李常有  徐敏强  郭耸 《应用声学》2008,27(4):315-320
旋转机械在运行过程中产生的声信号包含了滚动轴承的运行状态信息,且可采用非接触式测量,本文应用它对滚动轴承进行故障诊断。基于morlet小波变换的包络分析对采集的声信号进行降噪及包络处理,然后变换到频域,提取出特征频率并经过转换后作为线性神经网路的输入向量,辨识滚动轴承的状态。实验表明,本方法对滚动轴承故障诊断是有效的。  相似文献   

9.
When rolling bearings have a local fault, the real bearing vibration signal related to the local fault is characterized by the properties of nonlinear and nonstationary. To extract the useful fault features from the collected nonlinear and nonstationary bearing vibration signals and improve diagnostic accuracy, this paper proposes a new bearing fault diagnosis method based on parameter adaptive variational mode extraction (PAVME) and multiscale envelope dispersion entropy (MEDE). Firstly, a new method hailed as parameter adaptive variational mode extraction (PAVME) is presented to process the collected original bearing vibration signal and obtain the frequency components related to bearing faults, where its two important parameters (i.e., the penalty factor and mode center-frequency) are automatically determined by whale optimization algorithm. Subsequently, based on the processed bearing vibration signal, an effective complexity evaluation approach named multiscale envelope dispersion entropy (MEDE) is calculated for conducting bearing fault feature extraction. Finally, the extracted fault features are fed into the k-nearest neighbor (KNN) to automatically identify different health conditions of rolling bearing. Case studies and contrastive analysis are performed to validate the effectiveness and superiority of the proposed method. Experimental results show that the proposed method can not only effectively extract bearing fault features, but also obtain a high identification accuracy for bearing fault patterns under single or variable speed.  相似文献   

10.
余永增 《应用声学》2018,37(6):889-894
为解决振动检测方法不能有效识别低速旋转机械滚动轴承故障问题,利用声发射检测方法,建立了滚动轴承低速声发射信号采集试验装置,对模拟人工缺陷滚动轴承声发射信号进行了采集,进而对滚动轴承声发射信号进行总体平均经验模式分解,结合能量矩及相关系数法综合判断分解后各模态分量的真伪,据此提取出特征信号并做出其局部Hilbert边际谱,最后对滚动轴承各种故障模式进行诊断。试验结果表明该诊断方法能准确识别滚动轴承声发射信号故障频率,依据特征频率及幅值大小可对低速滚动轴承故障进行有效诊断。  相似文献   

11.
The sparse decomposition based on matching pursuit is an adaptive sparse expression of the signals. An adaptive matching pursuit algorithm that uses an impulse dictionary is introduced in this article for rolling bearing vibration signal processing and fault diagnosis. First, a new dictionary model is established according to the characteristics and mechanism of rolling bearing faults. The new model incorporates the rotational speed of the bearing, the dimensions of the bearing and the bearing fault status, among other parameters. The model can simulate the impulse experienced by the bearing at different bearing fault levels. A simulation experiment suggests that a new impulse dictionary used in a matching pursuit algorithm combined with a genetic algorithm has a more accurate effect on bearing fault diagnosis than using a traditional impulse dictionary. However, those two methods have some weak points, namely, poor stability, rapidity and controllability. Each key parameter in the dictionary model and its influence on the analysis results are systematically studied, and the impulse location is determined as the primary model parameter. The adaptive impulse dictionary is established by changing characteristic parameters progressively. The dictionary built by this method has a lower redundancy and a higher relevance between each dictionary atom and the analyzed vibration signal. The matching pursuit algorithm of an adaptive impulse dictionary is adopted to analyze the simulated signals. The results indicate that the characteristic fault components could be accurately extracted from the noisy simulation fault signals by this algorithm, and the result exhibited a higher efficiency in addition to an improved stability, rapidity and controllability when compared with a matching pursuit approach that was based on a genetic algorithm. We experimentally analyze the early-stage fault signals and composite fault signals of the bearing. The results further demonstrate the effectiveness and superiority of the matching pursuit algorithm that uses the adaptive impulse dictionary. Finally, this algorithm is applied to the analysis of engineering data, and good results are achieved.  相似文献   

12.
提出了一种基于粒子滤波状态估计的滚动轴承故障识别方法,该方法主要包括故障模型建立和故障识别两个步骤。在故障模型建立部分,首先依据滚动轴承不同故障状态下的振动信号,建立对应的自回归模型,作为故障模型;在故障识别部分,将正常状态下对应的模型,转化为状态空间模型,设计粒子滤波器,然后对不同的故障状态进行估计,提取其残差的相关特征,并结合模型参数特征应用BP神经网络识别算法进行故障识别。最后以美国凯斯西储大学的滚动轴承振动数据为例,验证了该方法的有效性。  相似文献   

13.
A robust feature extraction scheme for the rolling element bearing (REB) fault diagnosis is proposed by combining the envelope extraction and the independent component analysis (ICA). In the present approach, the envelope extraction is not only utilized to obtain the impulsive component corresponding to the faults from the REB, but also to reduce the dimension of vibration sources included in the sensor-picked signals. Consequently, the difficulty for applying the ICA algorithm under the conditions that the sensor number is limited and the source number is unknown can be successfully eliminated. Then, the ICA algorithm is employed to separate the envelopes according to the independence of vibration sources. Finally, the vibration features related to the REB faults can be separated from disturbances and clearly exposed by the envelope spectrum. Simulations and experimental tests are conducted to validate the proposed method.  相似文献   

14.
徐遥 《应用声学》2017,25(7):63-65, 69
针对较强噪声环境下的滚动轴承故障预测问题,为提高轴承故障预测的精度,提出并研究了一种新的滚动轴承预测技术。采用将灰色模型和极限学习机(ELM)相结合的方法,针对轴承运行状态值的非线性特点,先将样本数据进行灰色处理,解决数据的随机性和波动性问题,然后代入学习速度快,泛化精度高的ELM神经网络进行训练。在训练完毕后,对未来的轴承运行状态数据进行分析,将其与轴承设备的理论诊断标准相比较以达到故障预测的目的。  相似文献   

15.
Rolling element bearings are widely used in rotating machinery. Its unexpected failure may result in machine breakdown. Whenever a bearing suffers a localized fault, the transients with a potential cyclic characteristic are generated by the rollers striking the localized fault. This phenomenon is an early bearing fault feature. Therefore, the extraction of the transients is beneficial to the identification of the early bearing fault. In this paper, a novel adaptive wavelet stripping algorithm (AWSA) is proposed to extract the simulated transients from an original bearing fault signal. Firstly, the parametric model of anti-symmetric real Laplace wavelet (ARLW) or impulse response wavelet (IRW) is built to approximate the real transients. Then, with the aid of wavelet correlation filtering analysis, the simulated transients with the optimal frequency, damping coefficient and delay time are adaptively peeled from the original bearing fault signal. The spatial reconstruction of the simulated transients reflects the random occurrence of the real transients. In order to boost the computing time of the AWSA, an enhanced AWSA is developed. At last, the bearing fault signals collected from an experimental machine and an industrial machine are used to validate the effectiveness of the AWSA. The results show that the AWSA can adaptively peel the simulated transients from the original bearing fault signals. A comparison with a periodic multi-transient model is conducted to show that the AWSA is better to extract the random characteristics of the real transients.  相似文献   

16.
This paper provides insights into the physical mechanism by which defect-related impulsive forces, and consequently, vibrations are generated in defective rolling element bearings. A dynamic nonlinear finite element model of a rolling element bearing with an outer raceway defect was numerically solved using the explicit dynamics finite element software package, LS-DYNA. A hypothesis was developed to explain the numerical noise observed in the predicted vibrations and contact forces, and the noise frequencies were analytically estimated. In-depth analyses of the numerically estimated dynamic contact forces between the rolling elements and the raceways of a bearing, which are not measured in practice, and have not been reported previously, are presented in this paper. Several events associated with the traverse of the rolling elements through the outer raceway defect are elaborated, and the impulsive force generating mechanism is explained. It was found that the re-stressing of the rolling elements that occurs near the end of a raceway defect generates a burst of multiple short-duration force impulses. The modelling results also highlight that much higher contact forces and accelerations are generated on the exit of the rolling elements out of defect compared to when they strike the defective surface. A bearing with a machined outer raceway defect was tested in a controlled experiment; the measured acceleration response compared favourably with the numerically modelled acceleration results, thereby, validating the low- and high-frequency characteristics of the de-stressing and re-stressing of the rolling elements, respectively.  相似文献   

17.
Integer-scale structuring element is usually used in the traditional mathematical morphology (MM) for signal processing. When applied for impulsive feature demodulation of vibration signal of rolling element bearings, the integer-scale MM (ISMM) may lead to low resolution result and thus undermines its defect diagnosis capability. For this reason, this paper proposes a continuous-scale MM (CSMM) scheme by interpolation and re-sampling to improve scale resolution for more reliable fault signature extraction. Based on the frequency domain kurtosis criterion, a narrowband merging operation is employed to locate the optimal scale band that best reflects the impulsive feature from the CSMM analysis results. The demodulated components in the optimal scale band are employed to detect the existence of the bearing fault. The proposed optimal CSMM demodulation technique is evaluated using both simulated and experimental bearing vibration signals. The results show that, the CSMM is capable of generating demodulation signals with higher resolution, and the optimal scale band demodulation based on the CSMM can reliably extract impulsive features for bearing defect diagnosis.  相似文献   

18.
Fault diagnosis of wind turbines is of great importance to reduce operating and maintenance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on single faults, and the methods for combined faults usually depend on inefficient manual analysis. Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT) machine learning based fault diagnosis method for combined fault of wind turbines, which can identify the fault type of wind turbines simply and efficiently without human experience and with low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine (SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models, the proposed model has superiority for this classification problem.  相似文献   

19.
The vibration signals from complex structures such as wind turbine (WT) planetary gearboxes are intricate. Reliable analysis of such signals is the key to success in fault detection and diagnosis for complex structures. The recently proposed iterative atomic decomposition thresholding (IADT) method has shown to be effective in extracting true constituent components of complicated signals and in suppressing background noise interferences. In this study, such properties of the IADT are exploited to analyze and extract the target signal components from complex signals with a focus on WT planetary gearboxes under constant running conditions. Fault diagnosis for WT planetary gearboxes has been a very important yet challenging issue due to their harsh working conditions and complex structures. Planetary gearbox fault diagnosis relies on detecting the presence of gear characteristic frequencies or monitoring their magnitude changes. However, a planetary gearbox vibration signal is a mixture of multiple complex components due to the unique structure, complex kinetics and background noise. As such, the IADT is applied to enhance the gear characteristic frequencies of interest, and thereby diagnose gear faults. Considering the spectral properties of planetary gearbox vibration signals, we propose to use Fourier dictionary in the IADT so as to match the harmonic waves in frequency domain and pinpoint the gear fault characteristic frequency. To reduce computing time and better target at more relevant signal components, we also suggest a criterion to estimate the number of sparse components to be used by the IADT. The performance of the proposed approach in planetary gearbox fault diagnosis has been evaluated through analyzing the numerically simulated, lab experimental and on-site collected signals. The results show that both localized and distributed gear faults, both the sun and planet gear faults, can be diagnosed successfully.  相似文献   

20.
Rapid expansion of wind turbines has drawn attention to reduce the operation and maintenance costs. Continuous condition monitoring of wind turbines allows for early detection of the generator faults, facilitating a proactive response, minimizing downtime and maximizing productivity. However, the weak features of incipient faults in wind turbines are always immersed in noises of the equipment and the environment. Wavelet denoising is a useful tool for incipient fault detection and its effect mainly depends on the feature separation and the noise elimination. Multiwavelets have two or more multiscaling functions and multiwavelet functions. They possess the properties of orthogonality, symmetry, compact support and high vanishing moments simultaneously. The data-driven block threshold selected the optimal block length and threshold at different decomposition levels by using the minimum Stein’s unbiased risk estimate. A multiwavelet denoising technique with the data-driven block threshold was proposed in this paper. The simulation experiment and the feature detection of a rolling bearing with a slight inner race defect indicated that the proposed method successfully detected the weak features of incipient faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号