首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-infrared, viscometric, and calorimetric measurements were made on aqueous poly(vinyl methyl ether) (PVME) solutions at temperatures between 15 and 43°C. We found a hydrogen-bonded structure of water around the polymer chain (a polymer-water complex), which is characterized by two distinct hydration numbers (i.e., 2.7 and 5.0 water molecules on each monomer unit of the chain) by analyzing the concentration dependence of endothermic enthalpies at a cloud point temperature, ca. 35°C. In particular, the 2.7 water-polymer complex has been suggested to be cooperatively formed by using data of the near-infrared (nir) absorption spectrum around 1930 nm. Furthermore, the peak-wavelength of the nir spectrum has been observed to change drastically at the cloud point when the temperature is raised. This can be interpreted as a cooperative collapse of the hydrogen-bonded water structure to free water, resulting in the aggregation of the polymer chains due to the exposure of their hydrophobic groups at the cloud point. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
For a wide range of poly(vinyl methyl ether) (PMVE) concentrations (1–16 g dm−3), in anoxic conditions, polymer-derived radicals recombine in two major pathways: (i) crosslinking and (ii) disproportionation. Both these processes proceed inter- and intramolecularly. The radiation-chemical yields and kinetics of crosslinking have been studied by pulse radiolysis with light scattering intensity detection (LSI). In the absence of oxygen, G-values of intermolecular crosslinking were determined on the basis of LSI changes versus applied dose and compared with the results obtained previously for γ-irradiated samples. It has been found that the first half-life time of intermolecular crosslinking decreases with increasing dose per pulse. Addition of small amounts of macroradical scavenger (cysteamine hydrochloride) decreases, drastically, the increase of LSI signal. On increasing the PVME concentration, intermolecular crosslinking becomes more efficient.

In the presence of oxygen, for diluted PVME solution (0.1 g dm−3), decrease of LSI signal consisting of the kinetic of a first-order reaction was observed. The rate constant of LSI decrease was found to be 1.1×103 s−1 and it was attributed to the main-chain scission.  相似文献   


3.
The heat capacity of poly(vinyl methyl ether) (PVME) has been measured using adiabatic calorimetry and temperature‐modulated differential scanning calorimetry (TMDSC). The heat capacity of the solid and liquid states of amorphous PVME is reported from 5 to 360 K. The amorphous PVME has a glass transition at 248 K (?25 °C). Below the glass transition, the low‐temperature, experimental heat capacity of solid PVME is linked to the vibrational molecular motion. It can be approximated by a group vibration spectrum and a skeletal vibration spectrum. The skeletal vibrations were described by a general Tarasov equation with three Debye temperatures Θ1 = 647 K, Θ2 = Θ3 = 70 K, and nine skeletal modes. The calculated and experimental heat capacities agree to better than ±1.8% in the temperature range from 5 to 200 K. The experimental heat capacity of the liquid rubbery state of PVME is represented by Cp(liquid) = 72.36 + 0.136 T in J K?1 mol?1 and compared to estimated results from contributions of the same constituent groups of other polymers using the Advanced Thermal AnalysiS (ATHAS) Data Bank. The calculated solid and liquid heat capacities serve as baselines for the quantitative thermal analysis of amorphous PVME with different thermal histories. Also, knowing Cp of the solid and liquid, the integral thermodynamic functions of enthalpy, entropy, and free enthalpy of glassy and amorphous PVME are calculated with help of estimated parameters for the crystal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2141–2153, 2005  相似文献   

4.
Temperature-sensitive hydrogel beads were prepared by radiation crosslinking of poly(vinyl methyl ether) PVME spheres wrapped in Ca-alginate. The obtained gel beads have diameters in the sub-millimeter or millimeter range (depending on the PVME concentration). They were characterized by sol-gel analysis, swelling measurements, and differential scanning calorimetry. The gel content g increases with increasing radiation dose D. The swelling degree Qv decreases with increasing PVME concentration cp and increasing D. In comparison to PVME bulkgels the phase-transition temperature of the synthesized PVME gel beads is a little decreased.  相似文献   

5.
The thermosensitive phase separation of poly(vinyl methyl ether) (PVME) aqueous solutions has been investigated using near-infrared spectroscopy in combination with two-dimensional correlation analysis, and a two-step phase separation mechanism during gradual heating has been established. Two-dimensional near-infrared (2D NIR) analysis results indicate that during this two-step process the dehydration of CH 2 groups occurs earlier than that of CH 3 groups. This result suggests that it is the change of the hydrophobic hydrocarbon chain conformation induced by heating that indirectly leads to the dehydration of the hydrophilic ether oxygen side groups.  相似文献   

6.
We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ? 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegri?a, Macromolecules, 38, 7056 (2005)]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.  相似文献   

7.
In the lower critical solution temperature phase separation of poly(vinyl methyl ether) aqueous solutions, the process corresponding to the weakening of the hydrogen bond interaction with increasing temperature is dominant and occurs over the entire concentration region of solutions and over a broad temperature range from 30 to 41°C, giving rise to the energetic enthalpic effect during phase separation, while the conformational change, that is, collapse of the swollen polymer coils, occurs only in the swelling polymer solution when the water concentration is above 38.3 wt %, giving rise to the entropic effect during phase separation. In addition, the entropic process corresponding to the collapse of the polymer coils occurs in a much narrow theta temperature range from 35.5 to 37°C. If the solution is held at a constant temperature for a sufficiently long time, 90% collapse of the polymer coils occurs in only the 0.5 °C temperature region between 35.5 and 36°C. Accordingly, in the enthalpic process, the most dramatic blueshift of the νC‐O bond peak occurs in the temperature range between 35 and 41°C, while this blueshift is only approximately 2 cm?1 in the temperature range from 30 to 35°C, prior to the collapse of the polymer coils due to the entropic effect. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 323–330  相似文献   

8.
Blends of poly(vinyl methyl ether) (PVME) with styrene/acrylonitrile (SAN), with styrene/maleic anhydride (SMA), and with styrene/acrylic acid (SAA) copolymers were examined for glass transition and lower critical solution temperature behavior. These copolymers were found to be completely miscible with PVME at levels of 3% or less of AA; below 10–11% AN, and below 15% MA (w%). Small amounts of the comonomers raised the temperature at which blends with PVME undergo phase separation on heating. This effect was greatest in the order AA > AN > MA. An interpretation of these results is given in terms of recent theories for homopolymer-copolymer blends, and the extent to which solubility parameter theory can be useful is considered.  相似文献   

9.
We have investigated the fluorescence emission spectra of pyrene and anthracene dyes covalently bonded to polystyrene (PS) upon phase separation from poly(vinyl methyl ether) (PVME). The specific chemical structure of the fluorescent labels is found to affect the measured phase separation temperature TS, with fluorophores covalently attached in closer proximity to the PS backbone identifying phase separation a few degrees earlier. The sharp increase in fluorescence intensity upon phase separation that occurs for all fluorophores with little change in spectral shape is consistent with a mechanism of static fluorescence quenching resulting from the specific interaction with a nearby quenching molecular unit. Based on recent work that has identified a weak hydrogen bond occurring between the aromatic hydrogens of PS and the ether oxygen of PVME, we believe a similar weak hydrogen bond is likely occurring between the PVME oxygen and the aromatic dyes providing a local (few nanometer) sensitivity to phase separation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

10.
Conformational changes have been studied in intramolecular polymer-polymer complexes (intraPC) of graft copolymers of poly(acrylamide) and poly(vinyl alcohol) (PVA-g-PAA) with various numbers of grafts (4-42) per molecule as a function of temperature and copolymer concentration. It is shown that the magnitude of conformational change depends on the grafts content while the temperature range over which the conformation changes occur is essentially determined by copolymer concentration. The conformational changes are reversible on heating and cooling.  相似文献   

11.
Photooxidation of blends of polystyrene and poly (vinyl methyl ether) was studied at 30°C. The oxygen uptake by PS was negligible but PVME oxidized readily. The induction period of oxidation of PVME was prolonged by the presence of PS. The steady state rate of oxidation of the blend was strongly influenced by the segmental mobility of the blend which also governed the kinetics and morphology of phase separation. The molecular weight of PVME decreased more slowly in the blend as PS content increased. It was believed that the reaction between PVME radicals and PS resulted in less reactive PS radicals which retarded oxidation. The PS radicals eventually underwent chain scission reactions.  相似文献   

12.
13.
Time‐dependent demixing enthalpy recovery behavior of aqueous poly(vinyl methyl ether) (PVME) solutions exhibits distinct recovery characteristics in three concentration regions. The absence of recovery behavior below a water concentration of 38.3 wt % indicates that the PVME coil is in a globular state. The typically sigmoidal recovery behavior of demixing enthalpy above 38.3 wt % is ascribed to the reswelling of the collapsed polymer coils induced by the entropic effect. The increase in difference between the upper and lower limits indicates the continued swelling of the PVME coils. Above 65 wt %, a dominant diluting effect can be observed, and a much longer phase separation time is needed to reach the expected lower limit. In contrast, the recovery of demixing enthalpy in a wide range of water concentration (from 38.3 to 90 wt %) exhibits the same feature. The infrared spectroscopy results are in agreement with the above macroscopic differential scanning calorimetry results. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 142–151  相似文献   

14.
Semi-interpenetrating polymer networks of varying composition are prepared by crosslinking polystyrene containing a small number of maleic anhydride groups (4.8 mol% of MA units) with hexamethylene-diamine (HMDA) in the presence of linear poly(vinyl methyl ether) (PVME). Lightly crosslinked samples are homogeneous at room temperature and show a phase behaviour similar to uncrosslinked blends, i.e. lower critical solution temperature (LCST) behaviour. The influence of crosslinking on the phase behaviour has been studied by small angle light scattering (SALS) and turbidity measurements. The cloud point strongly depends on the heating rate. The presence of the network reduces the stable single phase region in agreement to theory. In systems showing spinodal decomposition, it is expected that some concentration fluctuations will grow more rapidly than others resulting in a separated phase system which shows high degree of connectivity with characteristic dimensions. Using temperature jump experiments, SALS can be used to estimate parameters of the phase separation kinetics and the characteristic dimensions of the phases. In temperature jump experiments into the spinodal region a maximum in the scattered light intensity is observed with time at a certain scattering vector. However, the semi-IPN's develop no scattering maximum. This is explained by a damping of the thermodynamical dominant wavelength in spinodal decomposition in the network.  相似文献   

15.
The dielectric permittivity and loss of poly(vinyl methyl ether) (mol. wt. 30,000) have been measured from 12 Hz to 100 kHz at temperatures from 77 K to 320 K. Two relaxation processes, γ and β, are observed at T < Tg (245 K), and one above Tg. The Arrhenius plots of the γ and β processes have activation energies of 20 and 41 kJ mole?1 respectively. The relaxation rate of the α process is described by the Vogel-Fulcher-Tamman equation or the William-Landel-Ferry equation. The relaxation rates of γ and β processes evaluated from the isochrones differ from those evaluated from the isothermal spectrum. The features of chain motions observed are similar to those in other polymer and rigid molecular glasses.  相似文献   

16.
The tracer diffusion of 3-, 4-, and 12-arm polystyrene (PS) stars in poly(vinyl methyl ether) (PVME) gels has been measured by dynamic light scattering (DLS). The intensity correlation functions were analyzed by two methods. One was that employed previously in a DLS study of linear PS diffusion in PVME gels [N. A. Rotstein and T. P. Lodge, Macromolecules, Vol. 24. p. 1316 (1992)], and the other was based on consideration of possible nonergodicity effects [P. N. Pusey and W. van Megen, Physica A, Vol. 157, p. 705 (1990)]. Both methods gave equivalent results, suggesting that nonergodicity plays a small role in this system. This conclusion is not unreasonable, given that the PVME gels are almost isorefractive with the solvent (toluene), and that the signal is dominated by scattering from the PS chains. The resulting star diffusivities are consistently less than or equal to those for linear probes of comparable size, with the difference increasing with molecular weight. The diffusivities are also less than or equal to those obtained for the same stars in PVME solutions. A weak dependence on the number of arms is also observed. Finally, the mobility of a given star in a gel is much more sensitive to variations in the average molecular weight between cross-links than is the mobility of a linear chain. All of these features in the data are broadly consistent with the reptation hypothesis. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Homogeneous films comprised of mixtures of polystyrene and poly(vinyl methyl ether) can be obtained by evaporation from a ternary solution containing toluene as the solvent. Heterogeneous films result when the solvent is trichloroethylene. The possibility that a heterogeneous film cast from trichloroethylene can be transformed to a homogeneous one by physical means is a logical expectation when the polymer-polymer interaction is favorable, though as yet no comprehensive report has appeared in the literature. We have accomplished the transformation by increasing the temperature. Optical microscopy and glass transition experiments were employed to observe the effects.  相似文献   

18.
The Fourier transform infrared (FTIR) results are consistent with the differential scanning calorimetric results and verify the anomalous crystallization of water in 50% poly(vinyl methyl ether) aqueous solution during heating. Below about ?34 °C, the water/polymer complex was not damaged, and the water still associated with the polymer. When heating to about ?34 °C, the associated water started to free from the unpolar (methyl group) and polar‐site (ether‐oxygen group) interaction fields of polymer gradually. Then crystallization of water was induced in this system at temperatures ranging from ?34 to ?24 °C. The FTIR data also indicate that the structure of water started to change first upon forming strong H bonds among water molecules, and then the dehydration of the polymer began to proceed subsequently when the anomalous crystallization of water occurred. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2772–2779, 2002  相似文献   

19.
Fourier-transform infrared (FTIR) studies of polystyrene (PS)/poly(vinyl methyl ether) (PVME) blends are presented. Both compatible (one-phase) and phase-separated blends were studied. In the case of compatible PS/PVME blends, there is strong evidence for molecular interactions. The interaction spectrum was obtained by digital subtraction techniques. In contrast, no interaction is detected for the phase-separated blends. In view of these results, molecular interactions must play a role in the compatibility of the two polymers. The merits of factor analysis and least-squares fit methods, as pertaining to our data, are also discussed.  相似文献   

20.
Radiation induced crosslinking of poly(vinyl methylether) (PVME) has been investigated in aqueous solutions. The spectral and kinetic features of the transients involved in the crosslinking reaction have been studied by pulse radiolysis of dilute PVME solutions. H atoms reacts with PVME, like OH radicals, by abstracting an H atom predominantly from β-position with respect to ---OCH3 group, but the rate of reaction of H atom is an order of magnitude slower than that of OH reaction. The PVME radicals formed by H attack have been found to decay by usual 2nd-order kinetics unlike PVME radicals produced by OH attack that are reported to decay by a complex time-dependent kinetics that deviates strongly from 2nd-order kinetics. The rate constant of eaq with PVME at pH 5.5 has been found to be 1.2×108 dm3 mol−1 s−1. From the decay behaviour of the transient species formed by reaction of eaq with PVME, it has been shown that the transient initially reacts with solvent protons by a fast reaction to yield radical species which subsequently recombine by a slow mode. The dependence of gelation dose and radiation yields of crosslinking (Gx) of PVME on various factors such as polymer concentration, dose rate, pH, presence of oxygen and crosslinking agent has also been studied by steady-state radiolysis using an electron-beam accelerator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号