首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial trees     
S. Herke 《Discrete Mathematics》2009,309(20):5950-1246
A broadcast on a graph G is a function such that for each vV, f(v)≤e(v) (the eccentricity of v). The broadcast number of G is the minimum value of ∑vVf(v) among all broadcasts f for which each vertex of G is within distance f(v) from some vertex v having f(v)≥1. This number is bounded above by the radius of G as well as by its domination number. Graphs for which the broadcast number is equal to the radius are called radial; the problem of characterizing radial trees was first discussed in [J. Dunbar, D. Erwin, T. Haynes, S.M. Hedetniemi, S.T. Hedetniemi, Broadcasts in graphs, Discrete Appl. Math. (154) (2006) 59-75].We provide a characterization of radial trees as well as a geometrical interpretation of our characterization.  相似文献   

2.
A dominating broadcast on a graph G = (V, E) is a function f: V → {0, 1, ..., diam G} such that f(v) ≤ e(v) (the eccentricity of v) for all vV and such that each vertex is within distance f(v) from a vertex v with f(v) > 0. The cost of a broadcast f is σ(f) = Σ vV f(v), and the broadcast number λ b (G) is the minimum cost of a dominating broadcast. A set X ? V(G) is said to be irredundant if each xX dominates a vertex y that is not dominated by any other vertex in X; possibly y = x. The irredundance number ir (G) is the cardinality of a smallest maximal irredundant set of G. We prove the bound λb(G) ≤ 3 ir(G)/2 for any graph G and show that equality is possible for all even values of ir (G). We also consider broadcast domination as an integer programming problem, the dual of which provides a lower bound for λb.  相似文献   

3.
《Quaestiones Mathematicae》2013,36(6):749-757
Abstract

A set S of vertices is a total dominating set of a graph G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set is the total domination number γt(G). A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f (u)=0 is adjacent to at least one vertex v of G for which f (v)=2. The minimum of f (V (G))=∑u ∈ V (G) f (u) over all such functions is called the Roman domination number γR (G). We show that γt(G) ≤ γR (G) with equality if and only if γt(G)=2γ(G), where γ(G) is the domination number of G. Moreover, we characterize the extremal graphs for some graph families.  相似文献   

4.
A Roman dominating function on a graph G = (VE) is a function f : V ? {0, 1, 2}f : V \rightarrow \{0, 1, 2\} satisfying the condition that every vertex v for which f(v) = 0 is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function is the value w(f) = ?v ? V f(v)w(f) = \sum_{v\in V} f(v). The Roman domination number of a graph G, denoted by gR(G)_{\gamma R}(G), equals the minimum weight of a Roman dominating function on G. The Roman domination subdivision number sdgR(G)sd_{\gamma R}(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order to increase the Roman domination number. In this paper, first we establish upper bounds on the Roman domination subdivision number for arbitrary graphs in terms of vertex degree. Then we present several different conditions on G which are sufficient to imply that $1 \leq sd_{\gamma R}(G) \leq 3$1 \leq sd_{\gamma R}(G) \leq 3. Finally, we show that the Roman domination subdivision number of a graph can be arbitrarily large.  相似文献   

5.
A Roman dominating function on a graph G is a function f : V(G) → {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value f (V(G)) = ?u ? V(G) f (u){f (V(G)) = \sum_{u\in V(G)} f (u)}. The Roman domination number, γ R (G), of G is the minimum weight of a Roman dominating function on G. The Roman bondage number b R (G) of a graph G with maximum degree at least two is the minimum cardinality of all sets E í E(G){E^{\prime} \subseteq E(G)} for which γ R (GE′) > γ R (G). In this paper we present different bounds on the Roman bondage number of planar graphs.  相似文献   

6.
Let G = (V, E) be a graph. A set SV is a restrained dominating set, if every vertex not in S is adjacent to a vertex in S and to a vertex in VS. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A set SV is a weak dominating set of G if, for every u in VS, there exists a vS such that uvE and deg u ≥ deg v. The weak domination number of G, denoted by γw(G), is the minimum cardinality of a weak dominating set of G. In this article, we provide a constructive characterization of those trees with equal independent domination and restrained domination numbers. A constructive characterization of those trees with equal independent domination and weak domination numbers is also obtained. © 2000 John Wiley & Sons, Inc. J Graph Theory 34: 142–153, 2000  相似文献   

7.
《Quaestiones Mathematicae》2013,36(8):1101-1115
Abstract

An Italian dominating function (IDF) on a graph G = (V, E) is a function f: V → {0, 1, 2} satisfying the condition that for every vertex v ∈ V (G) with f (v) = 0, either v is adjacent to a vertex assigned 2 under f, or v is adjacent to at least two vertices assigned 1. The weight of an IDF f is the value ∑v∈V(G) f (v). The Italian domination number of a graph G, denoted by γI (G), is the minimum weight of an IDF on G. An IDF f on G is called a global Italian dominating function (GIDF) on G if f is also an IDF on the complement ? of G. The global Italian domination number of G, denoted by γgI (G), is the minimum weight of a GIDF on G. In this paper, we initiate the study of the global Italian domination number and we present some strict bounds for the global Italian domination number. In particular, we prove that for any tree T of order n ≥ 4, γgI (T) ≤ γI (T) + 2 and we characterize all trees with γgI (T) = γI (T) + 2 and γgI (T) = γI (T) + 1.  相似文献   

8.
A function f : V→{−1,1} defined on the vertices of a graph G=(V,E) is a signed 2-independence function if the sum of its function values over any closed neighbourhood is at most one. That is, for every vV, f(N[v])1, where N[v] consists of v and every vertex adjacent to v. The weight of a signed 2-independence function is f(V)=∑f(v), over all vertices vV. The signed 2-independence number of a graph G, denoted αs2(G), equals the maximum weight of a signed 2-independence function of G. In this paper, we establish upper bounds for αs2(G) in terms of the order and size of the graph, and we characterize the graphs attaining these bounds. For a tree T, upper and lower bounds for αs2(T) are established and the extremal graphs characterized. It is shown that αs2(G) can be arbitrarily large negative even for a cubic graph G.  相似文献   

9.
Broadcast domination was introduced by Erwin in 2002, and it is a variant of the standard dominating set problem, such that different vertices can be assigned different domination powers. Broadcast domination assigns an integer power f(v)?0 to each vertex v of a given graph, such that every vertex of the graph is within distance f(v) from some vertex v having f(v)?1. The optimal broadcast domination problem seeks to minimize the sum of the powers assigned to the vertices of the graph. Since the presentation of this problem its computational complexity has been open, and the general belief has been that it might be NP-hard. In this paper, we show that optimal broadcast domination is actually in P, and we give a polynomial time algorithm for solving the problem on arbitrary graphs, using a non-standard approach.  相似文献   

10.
A function f:V(G)→{0,1,2} is a Roman dominating function if every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. A function f:V(G)→{0,1,2} with the ordered partition (V0,V1,V2) of V(G), where Vi={vV(G)∣f(v)=i} for i=0,1,2, is a unique response Roman function if xV0 implies |N(x)∩V2|≤1 and xV1V2 implies that |N(x)∩V2|=0. A function f:V(G)→{0,1,2} is a unique response Roman dominating function if it is a unique response Roman function and a Roman dominating function. The unique response Roman domination number of G, denoted by uR(G), is the minimum weight of a unique response Roman dominating function. In this paper we study the unique response Roman domination number of graphs and present bounds for this parameter.  相似文献   

11.
An L(2,1)-labelling of a graph G is a function from the vertex set V (G) to the set of all nonnegative integers such that |f(u) f(v)| ≥ 2 if d G (u,v)=1 and |f(u) f(v)| ≥ 1 if d G (u,v)=2.The L(2,1)-labelling problem is to find the smallest number,denoted by λ(G),such that there exists an L(2,1)-labelling function with no label greater than it.In this paper,we study this problem for trees.Our results improve the result of Wang [The L(2,1)-labelling of trees,Discrete Appl.Math.154 (2006) 598-603].  相似文献   

12.
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f:V(G)→{0,1,2,…,k} with the following satisfied for all vertices u and v: |f(u)-f(v)|?diam(G)-dG(u,v)+1, where dG(u,v) is the distance between u and v. We prove a lower bound for the radio number of trees, and characterize the trees achieving this bound. Moreover, we prove another lower bound for the radio number of spiders (trees with at most one vertex of degree more than two) and characterize the spiders achieving this bound. Our results generalize the radio number for paths obtained by Liu and Zhu.  相似文献   

13.
This paper studies a variation of domination in graphs called rainbow domination. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of {1,2,…,k} such that for any vertex v with f(v)=0? we have ∪uNG(v)f(u)={1,2,…,k}. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G, that is the minimum value of ∑vV(G)|f(v)| where f runs over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees. For a given tree T, we also determine the smallest k such that .  相似文献   

14.
A lower bound on the total signed domination numbers of graphs   总被引:4,自引:0,他引:4  
Let G be a finite connected simple graph with a vertex set V(G)and an edge set E(G). A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1}.The weight of f is W(f)=∑_(x∈V)(G)∪E(G))f(X).For an element x∈V(G)∪E(G),we define f[x]=∑_(y∈NT[x])f(y).A total signed domination function of G is a function f:V(G)∪E(G)→{-1,1} such that f[x]≥1 for all x∈V(G)∪E(G).The total signed domination numberγ_s~*(G)of G is the minimum weight of a total signed domination function on G. In this paper,we obtain some lower bounds for the total signed domination number of a graph G and compute the exact values ofγ_s~*(G)when G is C_n and P_n.  相似文献   

15.
A function f:V(G)→{-1,0,1} defined on the vertices of a graph G is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. An MTDF f is minimal if there does not exist an MTDF g:V(G)→{-1,0,1}, fg, for which g(v)?f(v) for every vV(G). The weight of an MTDF is the sum of its function values over all vertices. The minus total domination number of G is the minimum weight of an MTDF on G, while the upper minus domination number of G is the maximum weight of a minimal MTDF on G. In this paper we present upper bounds on the upper minus total domination number of a cubic graph and a 4-regular graph and characterize the regular graphs attaining these upper bounds.  相似文献   

16.
Let G=(V,E) be a simple graph. A subset SV is a dominating set of G, if for any vertex uV-S, there exists a vertex vS such that uvE. The domination number of G, γ(G), equals the minimum cardinality of a dominating set. A Roman dominating function on graph G=(V,E) is a function f:V→{0,1,2} satisfying the condition that every vertex v for which f(v)=0 is adjacent to at least one vertex u for which f(u)=2. The weight of a Roman dominating function is the value f(V)=∑vVf(v). The Roman domination number of a graph G, denoted by γR(G), equals the minimum weight of a Roman dominating function on G. In this paper, for any integer k(2?k?γ(G)), we give a characterization of graphs for which γR(G)=γ(G)+k, which settles an open problem in [E.J. Cockayne, P.M. Dreyer Jr, S.M. Hedetniemi et al. On Roman domination in graphs, Discrete Math. 278 (2004) 11-22].  相似文献   

17.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a total dominating set if D is dominating, and the induced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total dominating set of G. A set DV(G) is a total outer-connected dominating set if D is total dominating, and the induced subgraph G[V(G)−D] is a connected graph. The total outer-connected domination number of G is the minimum cardinality of a total outer-connected dominating set of G. We characterize trees with equal total domination and total outer-connected domination numbers. We give a lower bound for the total outer-connected domination number of trees and we characterize the extremal trees.  相似文献   

18.
A three-valued function f: V → {−1, 0, 1} defined on the vertices of a graph G= (V, E) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every υV, f(N(υ)) ⩾ 1, where N(υ) consists of every vertex adjacent to υ. The weight of an MTDF is f(V) = Σf(υ), over all vertices υV. The minus total domination number of a graph G, denoted γ t (G), equals the minimum weight of an MTDF of G. In this paper, we discuss some properties of minus total domination on a graph G and obtain a few lower bounds for γ t (G).  相似文献   

19.
Let G = (V (G),E(G)) be a graph with vertex set V (G) and edge set E(G), and g and f two positive integral functions from V (G) to Z+-{1} such that g(v) ≤ f(v) ≤ dG(v) for all vV (G), where dG(v) is the degree of the vertex v. It is shown that every graph G, including both a [g,f]-factor and a hamiltonian path, contains a connected [g,f +1]-factor. This result also extends Kano’s conjecture concerning the existence of connected [k,k+1]-factors in graphs. * The work of this author was supported by NSFC of China under Grant No. 10271065, No. 60373025. † The work of these authors was also supported in part by the US Department of Energy’s Genomes to Life program (http://doegenomestolife.org/) under project, “Carbon Sequestration in Synechococcus sp.: From Molecular Machines to Hierarchical Modeling” (www.genomes2life.org) and by National Science Foundation (NSF/DBI-0354771,NSF/ITR-IIS-0407204).  相似文献   

20.
Let G be a simple connected graph with the vertex set V(G). The eccentric distance sum of G is defined as ξd(G)=vV(G)ε(v)DG(v), where ε(v) is the eccentricity of the vertex v and DG(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. In this paper we characterize the extremal unicyclic graphs among n-vertex unicyclic graphs with given girth having the minimal and second minimal eccentric distance sum. In addition, we characterize the extremal trees with given diameter and minimal eccentric distance sum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号