首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For simple graphs G and H, let f(G,H) denote the least integer N such that every coloring of the edges of KN contains either a monochromatic copy of G or a rainbow copy of H. Here we investigate f(G,H) when H = Pk. We show that even if the number of colors is unrestricted when defining f(G,H), the function f(G,Pk), for k = 4 and 5, equals the (k ? 2)‐ coloring diagonal Ramsey number of G. © 2006 Wiley Periodicals, Inc. J Graph Theory  相似文献   

2.
For two graphs, G and H, an edge coloring of a complete graph is (G,H)-good if there is no monochromatic subgraph isomorphic to G and no rainbow subgraph isomorphic to H in this coloring. The set of numbers of colors used by (G,H)-good colorings of Kn is called a mixed Ramsey spectrum. This note addresses a fundamental question of whether the spectrum is an interval. It is shown that the answer is “yes” if G is not a star and H does not contain a pendant edge.  相似文献   

3.
The graph Ramsey numberR(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. We find the largest star that can be removed from Kr such that the underlying graph is still forced to have a red G or a blue H. Thus, we introduce the star-critical Ramsey numberr(G,H) as the smallest integer k such that every 2-coloring of the edges of KrK1,r−1−k contains either a red copy of G or a blue copy of H. We find the star-critical Ramsey number for trees versus complete graphs, multiple copies of K2 and K3, and paths versus a 4-cycle. In addition to finding the star-critical Ramsey numbers, the critical graphs are classified for R(Tn,Km), R(nK2,mK2) and R(Pn,C4).  相似文献   

4.
For positive integers n1, n2, …, nI and graphs GI+1, GI+2, …, Gk, 1 ≤ / < k, the mixed Ramsey number χ(n1, …, n1, GI+1, …, Gk) is define as the least positive integer p such that for each factorization Kp = F1⊕ … ⊕ F FI+1⊕ … ⊕ Fk, it it follows that χ(Fi) ≥ ni for some i, 1 ? i ? l, or Gi is a subgraph of Fi for some i, l < i ? k. Formulas are presented for maxed Ramsey numbers in which the graphs GI+1, GI+2, …, Gk are connected, and in which k = I+1 and GI+1 is arbitray.  相似文献   

5.
In this paper we present three Ramsey‐type results, which we derive from a simple and yet powerful lemma, proved using probabilistic arguments. Let 3 ≤ r < s be fixed integers and let G be a graph on n vertices not containing a complete graph Ks on s vertices. More than 40 years ago Erd?s and Rogers posed the problem of estimating the maximum size of a subset of G without a copy of the complete graph Kr. Our first result provides a new lower bound for this problem, which improves previous results of various researchers. It also allows us to solve some special cases of a closely related question posed by Erd?s. For two graphs G and H, the Ramsey number R(G, H) is the minimum integer N such that any red‐blue coloring of the edges of the complete graph KN, contains either a red copy of G or a blue copy of H. The book with n pages is the graph Bn consisting of n triangles sharing one edge. Here we study the book‐complete graph Ramsey numbers and show that R(Bn, Kn) ≤ O(n3/log3/2n), improving the bound of Li and Rousseau. Finally, motivated by a question of Erd?s, Hajnal, Simonovits, Sós, and Szemerédi, we obtain for all 0 < δ < 2/3 an estimate on the number of edges in a K4‐free graph of order n which has no independent set of size n1‐δ. © 2004 Wiley Periodicals, Inc. Random Struct. Alg., 2005  相似文献   

6.
The Ramsey number Rk(G) of a graph G is the minimum number N, such that any edge coloring of KN with k colors contains a monochromatic copy of G. The constrained Ramsey number f(G, T) of the graphs G and T is the minimum number N, such that any edge coloring of KN with any number of colors contains a monochromatic copy of G or a rainbow copy of T. We show that these two quantities are closely related when T is a matching. Namely, for almost all graphs G, f(G, tK2) = Rt ? 1(G) for t≥2. © 2010 Wiley Periodicals, Inc. J Graph Theory 67:91‐95, 2011  相似文献   

7.
Let G1, G2,. …, Gt be an arbitrary t-edge coloring of Kn, where for each i ∈ {1,2, …, t}, Gi is the spanning subgraph of Kn consisting of all edges colored with the ith color. The irredundant Ramsey number s(q1, q2, …, qt) is defined as the smallest integer n such that for any t-edge coloring of Kn, i has an irredundant set of size qi for at least one i ∈ {1,2, …,t}. It is proved that s(3,3,3) = 13, a result that improves the known bounds 12 ≤ s(3,3,3) ≤ 14.  相似文献   

8.
The Hom complexes were introduced by Lovász to study topological obstructions to graph colorings. The vertices of Hom(G,K n ) are the n-colorings of the graph G, and a graph coloring is a partition of the vertex set into independent sets. Replacing the independence condition with any hereditary condition defines a set partition complex. We show how coloring questions arising from, for example, Ramsey theory can be formulated with set partition complexes. It was conjectured by Babson and Kozlov, and proved by Čukić and Kozlov, that Hom(G,K n ) is (nd−2)-connected, where d is the maximal degree of a vertex of G. We generalize this to set partition complexes.  相似文献   

9.
Given a graph G and a positive integer k, define the Gallai–Ramsey number to be the minimum number of vertices n such that any k‐edge coloring of contains either a rainbow (all different colored) triangle or a monochromatic copy of G. In this work, we improve upon known upper bounds on the Gallai–Ramsey numbers for paths and cycles. All these upper bounds now have the best possible order of magnitude as functions of k.  相似文献   

10.
A coloring of the edges of a graph is called alocal k-coloring if every vertex is incident to edges of at mostk distinct colors. For a given graphG, thelocal Ramsey number, r loc k (G), is the smallest integern such that any localk-coloring ofK n , (the complete graph onn vertices), contains a monochromatic copy ofG. The following conjecture of Gyárfás et al. is proved here: for each positive integerk there exists a constantc = c(k) such thatr loc k (G) cr k (G), for every connected grraphG (wherer k (G) is theusual Ramsey number fork colors). Possible generalizations for hypergraphs are considered.On leave from the Institute of Mathematics, Technical University of Warsaw, Poland.While on leave at University of Louisville, Fall 1985.  相似文献   

11.
Let Qn be a hypercube of dimension n, that is, a graph whose vertices are binary n-tuples and two vertices are adjacent iff the corresponding n-tuples differ in exactly one position. An edge coloring of a graph H is called rainbow if no two edges of H have the same color. Let f(G,H) be the largest number of colors such that there exists an edge coloring of G with f(G,H) colors such that no subgraph isomorphic to H is rainbow. In this paper we start the investigation of this anti-Ramsey problem by providing bounds on f(Qn,Qk) which are asymptotically tight for k = 2 and by giving some exact results.  相似文献   

12.
13.
Let r(k) denote the least integer n-such that for any graph G on n vertices either G or its complement G contains a complete graph Kk on k vertices. in this paper, we prove the following lower bound for the Ramsey number r(k) by explicit construction: r(k) ≥ exp (c(Log k)4/3[(log log k)1/3] for some constant c> 0.  相似文献   

14.
An integer sequence π is said to be graphic if it is the degree sequence of some simple graph G. In this case we say that G is a realization of π. Given a graph H, and a graphic sequence π we say that π is potentially H-graphic if there is some realization of π that contains H as a subgraph. We define σ(H,n) to be the minimum even integer such that every graphic sequence with sum at least σ(H,n) is potentially H-graphic. In this paper, we determine σ(H,n) for the graph H = Km1Km2∪...∪ Kmk when n is a sufficiently large integer. This is accomplished by determining σ(Kj + kK2,n) where j and k are arbitrary positive integers, and considering the case where j = m − 2k and m = ∑ mi.  相似文献   

15.
An equitable coloring of a graph is a proper vertex coloring such that the sizes of any two color classes differ by at most one. The least positive integer k for which there exists an equitable coloring of a graph G with k colors is said to be the equitable chromatic number of G and is denoted by χ=(G). The least positive integer k such that for any k′ ≥ k there exists an equitable coloring of a graph G with k′ colors is said to be the equitable chromatic threshold of G and is denoted by χ=*(G). In this paper, we investigate the asymptotic behavior of these coloring parameters in the probability space G(n,p) of random graphs. We prove that if n?1/5+? < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) = (1 + o(1))χ(G(n,p)) holds (where χ(G(n,p)) is the ordinary chromatic number of G(n,p)). We also show that there exists a constant C such that if C/n < p < 0.99, then almost surely χ(G(n,p)) ≤ χ=(G(n,p)) ≤ (2 + o(1))χ(G(n,p)). Concerning the equitable chromatic threshold, we prove that if n?(1??) < p < 0.99 for some 0 < ?, then almost surely χ(G(n,p)) ≤ χ=* (G(n,p)) ≤ (2 + o(1))χ(G(n,p)) holds, and if < p < 0.99 for some 0 < ?, then almost surely we have χ(G(n,p)) ≤ χ=*(G(n,p)) = O?(χ(G(n,p))). © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

16.
The generalised Ramsey number R(G1, G2,..., Gk) is defined as the smallest integer n such that, if the edges of Kn, the complete graph on n vertices, are coloured using k colours C1, C2,..., Ck, then for some i(1≤ik) there is a subgraph Gi of Kn with all of its edges colour Ci. When G1=G2=...,Gk=G, we use the more compact notation Rk(G).The generalised Ramsey numbers Rk(G) are investigated for all graphs G having at most four vertices (and no isolates). This extends the work of Chvátal and Harary, who made this investigation in the case k=2.  相似文献   

17.
Let G be a bipartite graph, with k|e(G). The zero-sum bipartite Ramsey number B(G, Zk) is the smallest integer t such that in every Zk-coloring of the edges of Kt,t, there is a zero-sum mod k copy of G in Kt,t. In this article we give the first proof that determines B(G, Z2) for all possible bipartite graphs G. In fact, we prove a much more general result from which B(G, Z2) can be deduced: Let G be a (not necessarily connected) bipartite graph, which can be embedded in Kn,n, and let F be a field. A function f : E(Kn,n) → F is called G-stable if every copy of G in Kn,n has the same weight (the weight of a copy is the sum of the values of f on its edges). The set of all G-stable functions, denoted by U(G, Kn,n, F) is a linear space, which is called the Kn,n uniformity space of G over F. We determine U(G, Kn,n, F) and its dimension, for all G, n and F. Utilizing this result in the case F = Z2, we can compute B(G, Z2), for all bipartite graphs G. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 151–166, 1998  相似文献   

18.
For fixed integers m,k2, it is shown that the k-color Ramsey number rk(Km,n) and the bipartite Ramsey number bk(m,n) are both asymptotically equal to kmn as n→∞, and that for any graph H on m vertices, the two-color Ramsey number is at most (1+o(1))nm+1/(logn)m-1. Moreover, the order of magnitude of is proved to be nm+1/(logn)m if HKm as n→∞.  相似文献   

19.
In this paper, we study the generalized Ramsey number r(G1,…, Gk) where the graphs G1,…, Gk consist of complete graphs, complete bipartite graphs, paths, and cycles. Our main theorem gives the Ramsey number for the case where G2,…, Gk are fixed and G1 Cn or Pn with n sufficiently large. If among G2,…, Gk there are both complete graphs and odd cycles, the main theorem requires an additional hypothesis concerning the size of the odd cycles relative to their number. If among G2,…, Gk there are odd cycles but no complete graphs, then no additional hypothesis is necessary and complete results can be expressed in terms of a new type of Ramsey number which is introduced in this paper. For k = 3 and k = 4 we determine all necessary values of the new Ramsey number and so obtain, in particular, explicit and complete results for the cycle Ramsey numbers r(Cn, Cl, Ck) and r(Cn, Cl, Ck, Cm) when n is large.  相似文献   

20.
The size Ramsey number r?(G, H) of graphs G and H is the smallest integer r? such that there is a graph F with r? edges and if the edge set of F is red-blue colored, there exists either a red copy of G or a blue copy of H in F. This article shows that r?(Tnd, Tnd) ? c · d2 · n and c · n3 ? r?(Kn, Tnd) ? c(d)·n3 log n for every tree Tnd on n vertices. and maximal degree at most d and a complete graph Kn on n vertices. A generalization will be given. Probabilistic method is used throught this paper. © 1993 John Wiley Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号