首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Entangled quantum states are an important component of quantum computing techniques such as quantum error-correction, dense coding, and quantum teleportation. We describe how to generate fully entangled states in the Hilbert space C N C N starting from a unitary matrix and show that they form an orthonormal basis in this space.  相似文献   

2.
We study the entanglement of states of a simple Fermi-Bose system. The Hilbert space is C 2 l2 (N). An explicit expression is given for the entanglement. We consider number states, coherent states and macroscopic quantum superposition states in the product system. Explicit formulas for the entanglement are also given in each of these cases.  相似文献   

3.
Entangled quantum states are an important component of quantum computingtechniques such as quantum error correction, dense coding, and quantumteleportation. We determine the requirements for a state in the Hilbert space C 9to be entangled and a solution to the corresponding factorization problem if thisis not the case.  相似文献   

4.
We investigate a superconducting Kosterlitz–Thouless transition in the two-dimensional (2D) Hubbard model using auxiliary quantum Monte Carlo method for the ground state. The pair susceptibility is computed for both the attractive and repulsive Hubbard model. The numerical results show that the s-wave pair susceptibility scales as χ  L2 for the attractive case, in agreement with previous quantum Monte Carlo studies. The scaling χ  L2 also holds for the d-wave pair susceptibility for the repulsive Hubbard model if we adjust the band parameter t′.  相似文献   

5.
We investigate the possibility of transforming, under local operations and classical communication, a general bipartite quantum state on a dA x dB tensor-product space into a final state in 2 x 2 dimensions, while maintaining as much entanglement as possible. For pure states, we prove that Nielsens theorem provides the optimal protocol, and we present quantitative results on the degree of entanglement before and after the dimensional reduction. For mixed states, we identify a protocol that we argue is optimal for isotropic and Werner states. In the literature, it has been conjectured that some Werner states are bound entangled and in support of this conjecture our protocol gives final states without entanglement for this class of states. For all other entangled Werner states and for all entangled isotropic states some degree of free entanglement is maintained. In this sense, our protocol may be used to discriminate between bound and free entanglement.Received: 21 January 2004, Published online: 2 March 2004PACS: 03.67.Mn Entanglement production, characterization, and manipulation - 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements - 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bells inequalities, GHZ states, etc.)  相似文献   

6.
We consider a quantum many-body system on a lattice which exhibits a spontaneous symmetry breaking in its infinite-volume ground states, but in which the corresponding order operator does not commute with the Hamiltonian. Typical examples are the Heisenberg antiferromagnet with a Néel order and the Hubbard model with a (superconducting) off-diagonal long-range order. In the corresponding finite system, the symmetry breaking is usually obscured by quantum fluctuation and one gets a symmetric ground state with a long-range order. In such a situation, Horsch and von der Linden proved that the finite system has a low-lying eigenstate whose excitation energy is not more than of orderN –1, whereN denotes the number of sites in the lattice. Here we study the situation where the broken symmetry is a continuous one. For a particular set of states (which are orthogonal to the ground state and with each other), we prove bounds for their energy expectation values. The bounds establish that there exist ever-increasing numbers of low-lying eigenstates whose excitation energies are bounded by a constant timesN –1. A crucial feature of the particular low-lying states we consider is that they can be regarded as finite-volume counterparts of the infinite-volume ground states. By forming linear combinations of these low-lying states and the (finite-volume) ground state and by taking infinite-volume limits, we construct infinite-volume ground states with explicit symmetry breaking. We conjecture that these infinite-volume ground states are ergodic, i.e., physically natural. Our general theorems not only shed light on the nature of symmetry breaking in quantum many-body systems, but also provide indispensable information for numerical approaches to these systems. We also discuss applications of our general results to a variety of interesting examples. The present paper is intended to be accessible to readers without background in mathematical approaches to quantum many-body systems.  相似文献   

7.
The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a (k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.  相似文献   

8.
The article presents the renormalization group treatment to the Hubbard model. To begin with, the bosonization of Hubbard model Hamiltonian is performed. We have obtained the sine-Gordon Hamiltonian. We have further approximated this Hamiltonian by the Hamiltonian of 4-theory. Then we utilized Wilson's results of the renormalization group method and obtained the recursion formula for the Hubbard model. Having solved these formulas we have obtained the critical indices for the Hubbard model.  相似文献   

9.
In a recent paper (Zha et al. Laser Phys. Lett. 10, 045201, 2013), presented a criterion of maximally mutiqubit entangled states (MMES). Though there are several known examples of maximally entangled quantum states of two, three, five and six qubits, the mathematical structure for multi-qubit entanglement of more than seven qubits is less clear. With an emphasis on eight qubits, by this criterion, two new forms of maximally eight-qubit MMES is obtained, where the subsystems of 1, 2, and 3-qubits are all completely mixed. We believe that the new form eight-qubit maximally entangled state can play an important role in quantum information.  相似文献   

10.
In this paper we propose a perfect teleportation protocol for certain class of three-qubit entangled states. The class of states which are teleported, is larger than those considered by Nie et al. (Int. J. Theor. Phys. 50, 2799 46) and Li et al. (Int. J. Theor. Phys. 47). We use cluster states as quantum channels. The paper is in the line of research for quantum mechanically transporting multiparticle entangled states.  相似文献   

11.
The ontological model framework for an operational theory has generated much interest in recent years. The debate concerning reality of quantum states has been made more precise in this framework. With the introduction of generalized notion of contextuality in this framework, it has been shown that completely mixed state of a qubit is preparation contextual. Interestingly, this new idea of preparation contextuality has been used to demonstrate nonlocality of some \(\psi \) -epistemic models without any use of Bell’s inequality. In particular, nonlocality of a non maximally \(\psi \) -epistemic model has been demonstrated from preparation contextuality of a maximally mixed qubit and Schrödinger’s steerability of the maximally entangled state of two qubits (Leifer and Maroney, Phys Rev Lett 110:120401, 2013). In this paper, we, show that any mixed state is preparation contextual. We, then, show that nonlocality of any bipartite pure entangled state, with Schmidt rank two, follows from preparation contextuality and steerability provided we impose certain condition on the epistemicity of the underlying ontological model. More interestingly, if the pure entangled state is of Schmidt rank greater than two, its nonlocality follows without any further condition on the epistemicity. Thus our result establishes a stronger connection between nonlocality and preparation contextuality by revealing nonlocality of any bipartite pure entangled states without any use of Bell-type inequality.  相似文献   

12.
We study a large class F of models of the quantum statistical mechanics dealing with two types of particles. First the spinless electrons are quantum particles obeying to the Fermi statistics, they can hop. Secondly the ions which cannot move, are classical particles. The Falicov–Kimball (FK) model(1) is a well known model belonging to F, for which the existence of an antiferomagnetic phase transition was proven in the seminal paper of Kennedy and Lieb.(2) This result was extended by Lebowitz and Macris.(3) A new approach to this problem based on quantum selection of the ground states was proposed in ref. 4. In this paper we extend this approach to show that, under the strong insulating condition, any hamiltonian of the class F admits, at every temperature, an effective hamiltonian, which governs the behaviour of the ions interacting through forces mediated by the electrons. The effective hamiltonians are long range many body Ising hamiltonians, which can be computed by a cluster expansion expressed in term of the quantum fluctuations. Our main result is that we can apply the powerfull results of the classical statistical mechanics to our quantum models. In particular we can use the classical Pirogov–Sinai theory to establish a hierarchy of phase diagrams, we can also study of the behaviour of the quantum inter- faces,(29) and so on...  相似文献   

13.
Recently, Choudhury (Int. J. Theor. Phys. 10, 1007 2016), proposed a teleportation protocol of three-qubit state using four-qubit quantum channels.According to their scheme the three-qubit entangled states could be teleported by use of three simultaneous quantum channels of four-qubit cluster states. In this paper,we emphasize that the same three-qubit entangled states can be teleported perfectly by using only one quantum channel of four-qubit cluster states.  相似文献   

14.
Based on the continuous variable GHZ entangled states, an efficient three-party quantum dialogue protocol is devised, where each legitimate communication party could simultaneously deduce the secret information of the other two parties with perfect efficiency. The security is guaranteed by the correlation of the continuous variable GHZ entangled states and the randomly selected decoy states. Furthermore, the three-party quantum dialogue protocol is directly generalized to an N-party quantum dialogue protocol by using the n-tuple continuous variable GHZ entangled states.  相似文献   

15.
Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in different orthogonal bases is a constant equal to , with d the dimension of the finite Hilbert space, are becoming more and more studied for applications such as quantum tomography and cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum optics. Complete sets of MUBs of cardinality d+1 have been derived for prime power dimensions d=pm using the tools of abstract algebra. Presumably, for non prime dimensions the cardinality is much less. Here we reinterpret MUBs as quantum phase states, i.e. as eigenvectors of Hermitian phase operators generalizing those introduced by Pegg and Barnett in 1989. We relate MUB states to additive characters of Galois fields (in odd characteristic p) and to Galois rings (in characteristic 2). Quantum Fourier transforms of the components in vectors of the bases define a more general class of MUBs with multiplicative characters and additive ones altogether. We investigate the complementary properties of the above phase operator with respect to the number operator. We also study the phase probability distribution and variance for general pure quantum electromagnetic states and find them to be related to the Gauss sums, which are sums over all elements of the field (or of the ring) of the product of multiplicative and additive characters. Finally, we relate the concepts of mutual unbiasedness and maximal entanglement. This allows to use well studied algebraic concepts as efficient tools in the study of entanglement and its information aspects.  相似文献   

16.
The interaction of classical and quantized electromagnetic fields with an ensemble of atoms in an optical cavity is considered. Four fields drive a double- level scheme in the atoms, consisting of a pair of systems sharing the same set of lower levels. Two of the fields produce maximum coherence, , between the ground state sublevels 1 and 2. This pumping scheme involves equal intensity fields that are resonant with both the one- and two-photon transitions of the system. There is no steady-state absorption of these fields, implying that the fields induce a type Electromagnetically-Induced Transparency (EIT) in the medium. An additional pair of fields interacting with the second system, combined with the EIT fields, leads to squeezing of the atom spin associated with the ground state sublevels. Our method involves a new mechanism for creating steady-state spin squeezing using an optical cavity. As the cooperativity parameter C is increased, the optimal squeezing varies as C -1/3. For experimentally accessible values of C, squeezing as large as 90% can be achieved.Received: 28 May 2003, Published online: 12 August 2003PACS: 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps - 42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements - 42.65.Pc Optical bistability, multistability, and switching, including local field effects  相似文献   

17.
This paper presents a comprehensive perspective of the metric of quantum states with a focus on the geometry in the background independent quantum mechanics. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state space and Kähler manifold. The metric of quantum states in the classical configuration space with the pseudo-Riemannian signature and its possible applications are explored. On contrary to the common perception that a metric for quantum state can yield a natural metric in the configuration space when the limit ?→0, we obtain the metric of quantum states in the configuration space without imposing the limiting condition ?→0. Here Planck’s constant ? is absorbed in the quantity like Bohr radii \(\frac{1}{2mZ\alpha}\sim a_{0}\). While exploring the metric structures associated with Hydrogen like atom, we witness another interesting finding that the invariant lengths appear in the multiple of Bohr’s radii as: ds 2=a 0 2 (? Ψ)2.  相似文献   

18.
In Ref. 1 we have considered the finite-dimensional quantum mechanics. There the quantum mechanical space of states wasV=C r. It is known that the second quantization of this space is the space of square-summable functions of finite number of variables(L 2(Rr,dx)) (Segal isomorphism). Creation and annihilation operators were introduced in Ref. 1, and the former coincided with the usual position and momentum operators in the conventional quantum mechanics. In this paper we shall investigate the spectral properties of field operators. We shall show that the isomorphism between the exponential ofV andL 2(Rr,dx) can be understood as the decomposition by generalized eigenvectors of field operators (Fourier transform).  相似文献   

19.
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv:1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners’ Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game’s properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.  相似文献   

20.
We have observed the photoassociative spectra of colliding ultracold 39K and 85Rb atoms to produce KRb* in all eight bound electronic states correlating with the 39K (4s) + 85Rb(5p 1/2 and 5p 3/2) asymptotes. These electronically excited KRb* ultracold molecules are detected after their radiative decay to the metastable triplet (a state and (in some cases) the singlet (X ground state. The triplet (a ultracold molecules are detected by two-photon ionization at 602.5 nm to form KRb + , followed by time-of-flight mass spectroscopy. We are able to assign a majority of the spectrum to three states (2(0 + ), 2(0-), 2(1)) in a lower triad of states with similar C 6 values correlating to the K(4s) + Rb (5p 1/2) asymptote; and to five states in an upper triad of three states (3(0 + ), 3(0-), 3(1)) and a dyad of two states (4(1), 1(2)), with one set of similar C 6 values within the upper triad and a different set of similar C 6 values within the dyad. We are also able to make connection with the short-range spectra of Kasahara et al. [J. Chem. Phys. 111, 8857 (1999)], identifying three of our levels as v = 61, 62 and 63 of the 1 4(1) state they observed. We also argue that ultracold photoassociation to levels between the K(4s) + Rb (5p 3/2) and K(4s) + Rb (5p 1/2) asymptotes may be weakly or strongly predissociated and therefore difficult to observe by ionization of a (or X molecules; we do know from Kasahara et al. that levels of the 1 4(1) and 2 5(1) states in the intra-asymptote region are predissociated. A small fraction ( 1/3) of the triplet (a ultracold molecules formed are trapped in the weak magnetic field of our magneto-optical trap (MOT).Received: 22 September 2004, Published online: 23 November 2004PACS: 33.20.Fb Raman and Rayleigh spectra (including optical scattering) - 34.20.Cf Interatomic potentials and forces - 33.80.Ps Optical cooling of molecules; trapping  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号