首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
It is shown that large-scale zonal flows (ZFs) can be excited by Reynolds stress of nonlinearly interacting random phase ion-acoustic waves (EIAWs) in a uniform magnetoplasma. Since ZFs are associated with poloidal sheared flows, they can tear apart short scale EIAW turbulence eddies, and hence contribute to the reduction of the cross-field turbulent transport in a magnetized plasma.  相似文献   

2.
A dusty plasma system consisting of electrons, ions, and negative as well as positive dust particles has been considered. The basic properties of arbitrary amplitude solitary potential structures that may exist in such a multi-component dusty plasma have been theoretically investigated by the pseudo-potential approach. It has been found that the presence of additional positive dust component does not only significantly modify the basic properties of solitary potential structures, but also causes the coexistence of positive and negative solitary potential structures, which is a completely new feature shown in a dusty plasma with dust of opposite polarity.  相似文献   

3.
A.A. Mamun 《Physics letters. A》2008,372(9):1490-1493
The nonlinear propagation of dust-ion-acoustic (DIA) waves in an adiabatic dusty plasma (containing adiabatic inertial-less electrons, adiabatic inertial ions, and negatively charged static dust) is investigated by the pseudo-potential approach. The combined effects of adiabatic electrons and negatively charged static dust on the basic properties (critical Mach number, amplitude, and width) of small as well as arbitrary amplitude DIA solitary waves are explicitly examined. It is found that the combined effects of adiabatic electrons and negatively charged static dust significantly modify the basic properties (critical Mach number, amplitude, and width) of the DIA solitary waves. It is also found that due to the effect of adiabaticity of electrons, negative DIA solitary waves [which are found to exist in a dusty plasma (containing isothermal electrons, cold ions, and negatively charged static dust) for α=zdnd0/ni0>2/3, where zd is the number of electrons residing onto a dust grain surface, nd0 is the constant (static) dust number density and ni0 is the equilibrium ion number density] disappears, i.e. due to the effect of adiabatic electrons, one cannot have negative DIA solitary waves for any possible set of dusty plasma parameters [0?α<1 and 0?σ=Ti0/Te0?1, where Ti0 (Te0) is electron (ion) temperature at equilibrium].  相似文献   

4.
It is shown that the parallel (magnetic field-aligned) velocity shear can drive the low-frequency (in comparison with the ion gyrofrequency) electrostatic (LF-ES) waves in an ultracold super-dense nonuniform magnetoplasma. By using an electron density response arising from the balance between the electrostatic and quantum Bohm forces, as well as the ion density response deduced from the continuity and momentum equations, a wave equation for the LF-ES waves is derived. In the local approximation, a new dispersion relation is obtained by Fourier transforming the wave equation. The dispersion relation reveals an oscillatory instability of dispersive drift-like modes in super-dense quantum magnetoplasmas.  相似文献   

5.
The effects of nonadiabatic dust charge fluctuation on the nonlinear propagation of the dust acoustic (DA) solitary wave in collisionless dusty plasma with streaming ions have been investigated. By using the reductive perturbation technique, a modified Korteweg-de Vries (mKdV) equation governing the nonlinear waves was derived and the solitary solution of the mKdV equation was also obtained. It was shown that the damping rate of the slow mode DA solitary wave was strongly affected by the ion streaming velocity.  相似文献   

6.
An adiabatic hot dusty plasma (containing non-inertial adiabatic electron and ion fluids, and negatively charged inertial adiabatic dust fluid) is considered. The basic properties of arbitrary amplitude dust-acoustic (DA) solitary waves, which exist in such an adiabatic hot dusty plasma, are explicitly examined by the pseudo-potential approach. To compare the basic properties (critical Mach number, amplitude and width) of the DA solitary waves observed in a dusty plasma containing adiabatic electron, ion and dust fluids with those observed in a dusty plasma containing isothermal electron and ion fluids and adiabatic dust fluid, it has been found that the adiabatic effect of inertia-less electron and ion fluids has significantly modified the basic properties of the DA solitary waves, and that on the basic properties of the DA solitary waves, the adiabatic effect of electron and ion fluids is much more significant than that of the dust fluid.  相似文献   

7.
The purpose of this research is to investigate the formation of zonal flows that can lead to the enhanced confinement of plasma in tokamaks. We show that zonal flows can be effectively formed by resonance triad interactions in the process of the inverse cascade. We discuss what energy sources are more effective for the formation of zonal flows.  相似文献   

8.
9.
Smain Younsi 《Physics letters. A》2008,372(31):5181-5188
The problem of nonlinear variable charge dust acoustic waves in a dusty plasma with trapped ions is revisited. The correct non-isothermal ion charging current is presented for the first time based on the orbit motion limited (OML) approach. The variable dust charge is then expressed in terms of the Lambert function and we take advantage of this new transcendental function to investigate nonlinear localized dust acoustic waves in a charge varying dusty plasma with trapped ions more rigorously.  相似文献   

10.
Nonlinear processes in magnetized plasma are very much important for the proper understanding of many space and astrophysical events. One of the most important type of study has been done in the domain of Alfven waves. Here we show that a Galerkin type approximation of the DNLS (Derivative Nonlinear Schrödinger) equation describing such wave propagation leads to a new type of nonlinear dynamical systems, very much rich in chaotic properties. Starting with the detailed analysis of fixed points and stability zones we make an in depth study of the unstable periodic orbits, which span the whole attractor. Next the birth of a Hopf bifurcation is identified and normal form, limit cycle analyzed. In the course of our study the detailed structure of the attractor is analyzed. A possibility of internal crisis is also indicated. These results will help in the choice of the plasma parameters for the actual physical situation.  相似文献   

11.
We present numerical simulations of fully nonlinear drift wave-zonal flow (DW-ZF) turbulence systems in a nonuniform magnetoplasma. In our model, the drift wave (DW) dynamics is pseudo-three-dimensional (pseudo-3D) and accounts for self-interactions among finite amplitude DWs and their coupling to the two-dimensional (2D) large amplitude zonal flows (ZFs). The dynamics of the 2D ZFs in the presence of the Reynolds stress of the pseudo-3D DWs is governed by the driven Euler equation. Numerical simulations of the fully nonlinear coupled DW-ZF equations reveal that short scale DW turbulence leads to nonlinear saturated dipolar vortices, whereas the ZF sets in spontaneously and is dominated by a monopolar vortex structure. The ZFs are found to suppress the cross-field turbulent particle transport. The present results provide a better model for understanding the coexistence of short and large scale coherent structures, as well as associated subdued cross-field particle transport in magnetically confined fusion plasmas.  相似文献   

12.
New electrostatic instabilities in the plasma shock front are reported. These instabilities are driven by the electro- static field which is caused by charge separation and the parameter gradients in a plasma shock front. The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically. There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation. The real frequencies of both unstable waves are similar to the electron electrostatic wave, and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction. The dependence of growth rates on the electric field and parameter gradients is also presented.  相似文献   

13.
P.K. Shukla   《Physics letters. A》2009,373(39):3547-3549
It is shown that ions can be accelerated by the space charge electric force arising from the separation of electrons and positrons due to the ponderomotive force of the magnetic field-aligned circularly polarized electromagnetic (CPEM) wave in a magnetized electron–positron–ion plasma. The ion acceleration critically depends on the external magnetic field strength. The result is useful in understanding differential ion acceleration in magnetized electron–positron–ion plasmas, such as those in magnetars and in some laboratory experiments that aim to mimic astrophysical environments.  相似文献   

14.
Large-amplitude solitary waves are investigated in a relativistic plasma with finite ion-temperature. The mass of electron is also considered. The Sagdeev’s pseudopotential is determined in terms ofu, the ion speed. It is found that there exists a critical value ofu 0, the value ofu at which (u′)2=0, beyond which the solitary waves cease to exist. The critical value also depends on the parameters likeν, the soliton velocity;μ, the electronion mass ratio orσ, the temperature ratio of ion to electron. This result reproduces our previous result [Czech. J. Phys., Vol. 54 (2004), No. 4, 489–496] when the ion temperature is neglected.  相似文献   

15.
Rabia Amour 《Physics letters. A》2009,373(22):1951-1955
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.  相似文献   

16.
Large-amplitude solitary waves are investigated in ion-beam plasma system. The Sagdeev’s pseudopotential is determined in terms of the ion speedu. It is found that there exists a critical value ofu 0, the value ofu at (u′)2 = 0, beyond which the solitary waves cease to exist. The critical value also depends on σ (the ion temperature) or σb (the ion beam temperature). One of the author (PC) is grateful to UGC, India for the financial support under SAP(No F.510/8/DRS/2004(SAP-1)).  相似文献   

17.
Ion acoustic shock waves (IASW's) are studied in an unmagnetized plasma consisting of electrons, positrons and adiabatically hot positive ions. This is done by deriving the Kortweg-deVries-Burger (KdVB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration, ratio of ion to electron temperature, and the plasma kinematic viscosity significantly modifies the shock structure. Finally, it is found that the temporal evolution of the non-planar IASW's is quite different by comparison with the planar geometry. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.  相似文献   

18.
彭黎黎  高喆 《中国物理快报》2008,25(11):4065-4067
The electron temperature gradient mode is investigated in elongated toroidal plasmas with a gyrokinetic integral eigenmode equation code. Dependence of the critical electron temperature gradient on the elongation is calculated. It is found that when the elongation increases, the growth rate spectrum is greatly shifted towards shorter poloidal wavelength, and then the poloidal wavenumber at which the mode is destabilizing critically in elongated plasmas will be larger than that in circular plasmas.  相似文献   

19.
王英  高喆 《中国物理快报》2006,23(8):2151-2154
By employing the local equilibrium of shaped tokamak plasmas, a gyrokinetic model with integral eigenmode equations is developed to investigate effects of the finite aspect ratio and noncircular flux surface on short wavelength ion temperature gradient (SWITG) driven modes. It is found that when nonadiabatic electron and trapped particle effects are not considered, the SWITG mode can be stabilized by finite aspect ratio A, elongation and triangularity δ, and can be destabilized by the Shafranov shift gradient θRo/θr.  相似文献   

20.
Linear and nonlinear electrostatic waves in unmagnetized electron-positron-ion (e-p-i) plasmas are studied. The electrons and positrons are assumed to be isothermal and dynamic while ions are considered to be stationary to neutralize the plasma background only. It is found that both upper (fast) and lower (slow) Langmuir waves can propagates in such a type of pair (e-p) plasma in the presence of ions. The small amplitude electrostatic Korteweg-de Vries (KdV) solitons are also obtained using reductive perturbation method. The electrostatic potential hump structures are found to exist when the temperature of the electrons is larger than the positrons, while the electrostatic potential dips are obtained in the reverse temperature conditions for electrons and positrons in e-p-i plasmas. The numerical results are also shown for illustration. The effects of different ion concentration and temperature ratios of electrons and positrons, on the formation of nonlinear electrostatic potential structures in e-p-i plasmas are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号