首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complexes of the type {Fp′(solvent)}+ PF6?, 3a–3d, (Fp′ = (η -C5Me5)Fe(CO)2, solvent = THF, CH3COCH3, CH3CN, or pyridine) are conveniently prepared by the reaction between Fp′2 and Cp2Fe+ PF6 (Cp = η5-C5H5) in the solvent under ambient conditions. The complexes {Fp′L}+ PF6?, 3e–3g, (L = CO, PPh3, P(OPh)3) are readily prepared from {Fp′THF}+. Fp′H is formed by treatment of 3a with NaBH4. Fp′SC(S)NMe2 can be prepared from 3a or 3e and NaSC(S)NMe2.  相似文献   

2.
In search of new DNA probes a series of new mono and binuclear cationic complexes [RuH(CO)(PPh3)2(L)]+ and [RuH(CO)(PPh3)2(-μ-L)RuH(CO)(PPh3)2]2+ [L=pyridine-2-carbaldehyde azine (paa), p-phenylene-bis(picoline)aldimine (pbp) and p-biphenylene-bis(picoline)aldimine (bbp)] have been synthesized. The reaction products were characterized by microanalyses, spectral (IR, UV-Vis, NMR and ESMS and FAB-MS) and electrochemical studies. Structure of the representative mononuclear complex [RuH(CO)(PPh3)2(paa)]BF4 was crystallographically determined. The crystal packing in the complex [RuH(CO)(PPh3)2(paa)]BF4 is stabilized by intermolecular π-π stacking resulting into a spiral network. Topoisomerase II inhibitory activity of the complexes and a few other related complexes [RuH(CO)(PPh3)2(L)]+ {L=2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) and 2,3-bis(2-pyridyl)-pyrazine (bppz)} have been examined against filarial parasite Setaria cervi. Absorption titration experiments provided good support for DNA interaction and binding constants have also been calculated which were found in the range 1.2 × 103-4.01 × 104 M−1.  相似文献   

3.
A route to the stable hydrido-diene salts [(diene)RuHL3] PF6, (diene = cycloocta-l,5-diene, hexa-l,3-diene and buta-1,3-diene, L = PMe2 Ph; diene = cycloocta-l,5-diene, L = P(OMe)3, P(OCH2)3 CMe P(OMe)Ph2 and PMePh2) has been found and the structure of [RuH(C4H6)(PMe2Ph)3] PF6 has been determined by X-ray diffraction.  相似文献   

4.
The reaction of PtCl2L (L = diphosphine) with the appropriate diphosphine L′ in ethanol followed by reduction with aqueous sodium borohydride leads to either disproportionation to give mixtures of the bis(diphosphine) complexes PtL2 and PtL′2 or to the formation of the mixed ligand complex PtLL′ depending on the diphosphines. Mixed ligand complexes are obtained when L=Ph2P(CH2)2PPh2, L′ = Ph2P(CH2PPh2cis-Ph2PCH CHPPh2, Ph2P(CH2)2AsPh2, Ph2- P(CH2)4PPh2, o-Ph2PC6H4PPh2; and L=(C6H11)2P(CH22P(C6H11)2, L′= Ph2P(CH2)PPh2, Ph2P(CH2)2PPh2cis-Ph2PCHCHPPh2, (2S,3S)-Ph2PCH- (CH3)CH(CH3)PPh2, (R)-Ph2PCH(CH3)CH2PPh2. When L=Ph2P(CH2)4PPh2 L′= Ph2P(CH23PPh2 or cis-Ph2PCHCHRPh2 the mixed ligand complexes are obtained but extensive disproportionation also occurs.  相似文献   

5.
Diazomethane converts [cpRu(dppm)(SO2)]PF6 into [cpRu(dppm)(CH2=SO2)]PF6, the first example of a complex containing a side-on coordinated sulfene. This compound is a strong organometallic electrophile as shown by rapid addition reactions with anionic (Cl, Br, CN, SCN) and neutral (PMe3, PPh3, NMe2Ph, MeOH, EtOH) nucleophiles.  相似文献   

6.
Treatment of N-(2-chlorobenzylidene)-N,N-dimethyl-1,3-propanediamine (1) and N-(2-bromo-3,4-(MeO)2-benzylidene)-N,N-dimethyl-1,3-propanediamine (20) with tris(dibenzylideneacetone)dipalladium(0) in toluene gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Cl)] (2) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(Br)] (21), respectively, via oxidative addition reaction with the ligand as a C,N,N terdentate ligand. Reaction of 2 with sodium bromide or iodide in an acetone–water mixture gave the cyclometallated analogues of 2, [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(Br)] (3) and [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(I)] (4), by halogen exchange. The X-ray crystal structures of 2, 3 and 4 were determined and discussed. Treatment of 2, 3, 4 and 21 with tertiary monophosphines in acetone gave the mononuclear cyclometallated complexes [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(L)(X)] (6: L=PPh3, X=Cl; 7: L=PPh3, X=Br; 8: L=PPh3, X=I; 9: L=PMePh2, X=Cl; 10: L=PMe2Ph, X=Cl) and [Pd{3,4-(MeO)2C6H2C(H)=NCH2CH2CH2NMe2}(L)(Br)] (22: L=PPh3; 23: L=PMePh2; 24: L=PMe2Ph). A fluxional behaviour due to an uncoordinated CH2CH2CH2NMe2 could be determined by variable temperature NMR spectroscopy. Treatment of 2, 3 and 4 with silver trifluoromethanesulfonate followed by reaction with triphenylphosphine gave the mononuclear complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(PPh3)][F3CSO3] (11) where the Pd–NMe2 bond was retained. Reaction of 2, 3 and 4 with ditertiary diphosphines in a cyclometallated complex–diphosphine 2:1 molar ratio gave the binuclear complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2](X)}2(μ-L–L)][L–L=PPh2(CH2)4PPh2(dppb) (13, X=Cl; 14, X=Br; 15, X=I; L–L=PPh2(CH2)5PPh2(dpppe): 16, X=Cl; 17, X=Br; 18, X=I) with palladium–NMe2 bond cleavage. Treatment of 2, 3 and 4 with ditertiary diphosphines, in a cyclometallated complex–diphosphine 2:1, molar ratio and AgSO3CF3 gave the binuclear cyclometallated complexes [{Pd[C6H4C(H)=NCH2CH2CH2NMe2]}2(μ-L–L)][F3CSO3]2 (11: L–L=PPh2(CH2)4PPh2(dppb), X=Cl; 12: L–L=PPh2(CH2)5PPh2 (dpppe), X=Cl). Reaction of 2 with the ditertiary diphosphine cis-dppe in a cyclometallated complex–diphosphine 1:1 molar ratio followed by treatment with sodium perchlorate gave the mononuclear cyclometallated complex [Pd{C6H4C(H)=NCH2CH2CH2NMe2}(cis-PPh2CH=CHPPh2–P,P)][ClO4] (19).  相似文献   

7.
Reaction of Cy3PCS2 (Cy = cyclohexyl) with the hydrido complexes [RuClH(CA)(PPh3)3] (A  O, S), [RuH(CO)(NCMe)2(PPh3)2]+, and [RuH(OClO3)(CO)(CNtBu)(PPh3)2] leads to the complex cations [RuH(CA)(PPh3)22-S2CPCy3)]+, [Ru(η2-S2CHPCy3)(CO) (PPh3)2]+, [RuH(η1-S2CPCy3)(CO)(CNtBu)(PPh3)2]+. The σ-vinyl complex [Ru(CHCHC6H4Me-4)Cl(CO)(PPh3)2] reacts with Cy3PCS2 to give the cationic complex [Ru(CHCHC6H4Me-4) (CO)(PPh3)22-S2CPCy3)]+, but this complex is not formed by hydroruthenation of HCCC6H4Me-4 by [RuH(CO)(PPh3)22-S2CPCy3)]+. The inter-relationships between the above complexes are discussed.  相似文献   

8.
The reactions of [RuH(CO)Cl(PPh3)3] with N,N-bis(salicylidine)-hydrazine (H2bsh) and N,N-bis(salicylidine)-p-phenylene diammine (H2bsp) in presence of KOH in methanol led in the formation of neutral mononuclear complexes with the formulations [RuH(CO)(PPh3)2(L)] (LHbsh or Hbsp). These present the first examples where the ligands H2bsh or H2bsp provide only two of its available donor sites for interaction with the metal centre. The complexes have been characterized by elemental analyses, FAB-MS, IR, 1H, 13C, 31P NMR and electronic spectral studies. Molecular structure of the representative complex [RuH(CO)(PPh3)2(Hbsh)] have been determined by single crystal X-ray analysis.  相似文献   

9.
The hydride carbonyl ruthenium(II) [RuH(CO)(pyzCOO)(PPh3)2] (1), [RuH(CO)(pyz-2,3-COO[CH3])(PPh3)2]·H2O (2) and dinuclear Ru(II)/Ru(III) [RuH(CO)(PPh3)(pyz-2,3-COO)Ru(CO)Cl2(PPh3)2] (3) complexes were synthesized and characterized by IR, 1H, 31P NMR, UV-Vis spectroscopy and X-ray crystallography. The experimental studies were complemented by quantum chemical calculations, which were used to identify the nature of the interactions between the ligands and the central ion, and the orbital composition in the frontier electronic structure. Based on a molecular orbital scheme, the calculated results allowed the interpretation of the UV-Vis spectra obtained at an experimental level. The luminescence property of the complex 2 was determined. The ac magnetic susceptibility measurements showed a residual magnetism evidenced by the small values of the molar susceptibility, not exceeding 0.5 emu/mol at 2 K, a lack of a Curie-Weiss region and weak magnetic interactions below 20 K.  相似文献   

10.
Ruthenium complexes of the type [RuL(CO)2Cl2], [RuL2Cl2], [RuL2(CO)(H2O)](PF6)2, [RuL2Cl]2(PF6)2, [RuL2(CO)Cl](PF6), and [RuL2(CO3)]·3H2O (where L is a bipyridine or phenanthroline derivative) dissolved in aqueous 2‐ethoxyethanol, and in a basic medium of KOH, triethylamine, or trimethylamine, catalyze the water‐gas shift reaction under mild conditions (PCO = 0.9 atm at 100 °C). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
Alcohols are oxidized by N‐methylmorpholine‐N‐oxide (NMO), ButOOH and H2O2 to the corresponding aldehydes or ketones in the presence of catalyst, [RuH(CO)(PPh3)2(SRaaiNR′)]PF6 ( 2 ) and [RuCl(CO)(PPh3)(SκRaaiNR′)]PF6 ( 3 ) (SRaaiNR′ ( 1 ) = 1‐alkyl‐2‐{(o‐thioalkyl)phenylazo}imidazole, a bidentate N(imidazolyl) (N), N(azo) (N′) chelator and SκRaaiNR′ is a tridentate N(imidazolyl) (N), N(azo) (N′), Sκ‐R is tridentate chelator; R and R′ are Me and Et). The single‐crystal X‐ray structures of [RuH(CO)(PPh3)2(SMeaaiNMe)]PF6 ( 2a ) (SMeaaiNMe = 1‐methyl‐2‐{(o‐thioethyl)phenylazo}imidazole) and [RuH(CO)(PPh3)2(SEtaaiNEt)]PF6 ( 2b ) (SEtaaiNEt = 1‐ethyl‐2‐{(o‐thioethyl)phenylazo}imidazole) show bidentate N,N′ chelation, while in [RuCl(CO)(PPh3)(SκEtaaiNEt)]PF6 ( 3b ) the ligand SκEtaaiNEt serves as tridentate N,N′,S chelator. The cyclic voltammogram shows RuIII/RuII (~1.1 V) and RuIV/RuIII (~1.7 V) couples of the complexes 2 while RuIII/RuII (1.26 V) couple is observed only in 3 along with azo reductions in the potential window +2.0 to ?2.0 V. DFT computation has been used to explain the spectra and redox properties of the complexes. In the oxidation reaction NMO acts as best oxidant and [RuCl(CO)(PPh3)(SκRaaiNR′)](PF6) ( 3 ) is the best catalyst. The formation of high‐valent RuIV=O species as a catalytic intermediate is proposed for the oxidation process. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Alkyl and Aryl Complexes of Iridium and Rhodium. XIX. Reaction of Carboxylic Acids with Selected Organo Compounds of Ir(I) and Rh(I): Formation of Arylhydrido, Carboxylatohydrido, and Carboxylato Derivatives cis-Arylhydridoiridium(III) complexes IrH(Ar)(O2CR)(CO)(PPh3)2 (R = Me: Ar = C6H5, 4-MeC6H4; R = Et: Ar = 4-MeC6H4, 2,4-Me2C6H3) could be prepared by oxidative addition of carboxylic acids to aryliridium(I) compounds Ir(Ar)(CO)(PPh3)2. Reaction of aliphatic carboxylic acids with alkyliridium(I) derivatives Ir(Alk)(CO)(PPh3)2 and Ir(Alk)[PhP(CH2CH2CH2PPh2)2] (Alk = CH2CMe3, CH2SiMe3) lead to dicarboxylatoiridium(III) hydrides IrH(O2CR)2(CO)(PPh3)2 (R = Me, Et, i-Pr) and IrH(O2CR)2[PhP(CH2CH2CH2PPh2)2] (R = Me, Et). Ir(4-MeC6H4CO2)(CO)(PPh3)2 was obtained from Ir(CH2SiMe3)(CO)(PPh3)2 and 4-MeC6H4CO2H. Interaction of organorhodium complexes Rh(R′)(CO)(PPh3)2 (R′ = CH2SiMe3, 4-MeC6H4) and Rh(R′)[PhP(CH2CH2CH2PPh2)2] (R′ = CH2CMe3, 4-MeC6H4) with aliphatic and aromatic carboxylic acids yielded carboxylatorhodium(I) compounds Rh(O2CR)(CO)(PPh3)2 (R = Me, t-Bu, 4-MeC6H4) and Rh(O2CR)[PhP(CH2CH2CH2PPh2)2] (R = Me, 4-MeC6H4).  相似文献   

13.
Summary Phenylacetylene reacts stoichiometrically or in excess with the Ru—H bond of RuH(CO)(PPh3)2(L) (LH = 2-hydroxypyridine, 2-hydroxy-6-methylpyridine, acetylacetone, benzoylacetone, 2-hydroxyacetophenone, 2-hydroxypropiophenone, 2-hydroxybenzophenone and 4-methoxy-2-hydroxybenzophenone) in boiling benzene to give -vinylic or -vinylalkynyl complexes of the type Ru(CO)-(PPh3)2(L)(CH CHPh) and Ru(CO)(PPh3)2(L){C-(C CPh) CHPh} in good yield. The vinylic complex can also be obtained by reacting the sodio derivative of the chelating ligand with the 16e unsaturated complex, [Ru(CO)Cl(CH CHPh)(PPh3)2], in CH2Cl2/MeOH mixture at ambient temperature. These complexes have been characterized by elemental analyses, and i.r., 1H, 13C and 31P n.m.r. spectroscopy.N.C.L Communication No. 5404.  相似文献   

14.
Stable ruthenium(II) carbonyl complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = 2′‐hydroxychalcones) were synthesized from the reaction of [RuHCl(CO)(EPh3)2(B)] (E = P or As; B = PPh3, AsPh3 or Py) with 2′‐hydroxychalcones in benzene under reflux. The new complexes were characterized by analytical and spectroscopic (IR, electronic 1H, 31P and 13C NMR) data. They were assigned an octahedral structure. The complexes exhibited catalytic activity for the oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N‐methylmorpholine‐N‐oxide (NMO) as co‐oxidant and were also found to be efficient transfer hydrogenation catalysts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The structure of [RuH(cod)(NH2NMe2)3][PF6] has been solved by X-ray diffraction methods and shows the cation to contain a facial arrangement of N,N-dimethylhydrazine ligands, coordinated via the NH2 nitrogen atoms, and held together by hydrogen bonds.  相似文献   

16.
The cationic ruthenium complexes [(η5-C5H5)Ru(Ph2PCH2CH2PPh2)L]PF6 (L=olefin, CO, pyridine or acetonitrile) have been prepared by treatment of (η5-C5H5)Ru(Ph2PCH2CH2PPh2)Cl with L and NH4PF6 in methanol of 20°C.  相似文献   

17.
Reaction of [(η-C7H7)Mo(CO)3][PF6] with certain Group V donor ligands afforded monosubstituted complexes [(η-C7H7)Mo(CO)2L][PF6] (L = P(OPh)3, PPh3, PPh2Me, PPhMe2, AsPh3, SbPh3). These were reduced by NaBH4 to the corresponding cycloheptatriene complexes (1-6-η-C7H8)Mo(CO)2L. In addition, the preparation of alkylcycloheptatriene complexes (1-6-η-C7H7R)Mo(CO)2L (R = Me, L = P(OPh)3, PPh3, PPh2Me; R = t-Bu, L = PPh3) is described. Spectroscopic properties, including 13C NMR, are reported.  相似文献   

18.
With a phase-transfer catalyst, Pt-dppm (dppm = Ph2PCH2PPh2) complexes undergo basic hydrolysis, in which a dppm ligand is hydrolyzed to produce PPh2Me and PPh2OH (or PPh2O). The ease of this hydrolysis reaction depends partly on the molecular charges of the metal complexes. Hydrolysis of neutral [Pt(dppm)(L-L)] (L-L = S2CO2, S2P(O)(OEt)2? and mnt = S2C2(CN)22?) is slower than that of monocationic [Pt(dppm)(L′-L′)]Cl (L′-V = S2CNEt2-, (CH2)2S(O)Me and acetylacetonate) compounds. Among the neutral compounds, hydrolysis of [Pt(dppm)(mnt)] is more rapid than that of the other two. These results are rationalized according to the ease with which partial positive charges are induced on the dppm phosphorus atoms. The steric effect due to ligands trans to dppm also influences the rate of hydrolysis of Pt-dppm compounds. When trans ligands are Ph2P(CH)2PPh2, Ph2P(CH2)3PPh2 and (Ph2PO2)H, no hydrolysis of dppm occurs. Hydrolysis of Pt-dppm compounds depends further on the concentrations of both the phase-transfer catalyst and OH? ions. All these results are consistent with nucleophilic attack of OH? on dppm phosphorus atoms to release strain in the Pt-dppm ring.  相似文献   

19.
The complexes [RuCl(CO)(PPh3)2(HBIm)] and [RuH(CO)(PPh3)2(1,10-phen)]Cl·H2O·(CH3)2O have been prepared and studied by IR and UV–Vis spectroscopy, and X-ray crystallography. The complexes were prepared in the reactions of [RuHCl(CO)(PPh3)3] with 2-(hydroxymethyl)benzimidazole or 1,10-phenanthroline two hydrate in acetone. The electronic spectra of the obtained compounds have been calculated using the TDDFT method. The luminescence properties of these complexes were examined.  相似文献   

20.
Abstract

The reaction of [MoCl(GeCl3)(CO)3(NCMe)2] with an equimolar quantity of L?L {L?L = 2,2′-bipy, 1,10-phen, Ph2P(CH2)nPPh2 (n = 1 or 2)} in CH2Cl2 at room temperature gave either [MoCl(GeCl3)(CO)3(L?L)] (L?L = 2,2′-bipy or 1,10-phen) (1 and 2) or [MoCl(GeCl3)(CO)2 (NCMe)(L?L)]{L?L = Ph2P(CH2)nPPh2 (n = 1 or 2) (3 or 4), respectively. Equimolar quantities of [MoCl(GeCl3)(CO)2(NCMe){Ph2P(CH2)PPh2}] (3) and L?L {L?L = 2,2′-bipy or Ph2P(CH)2PPh2} react in CH2Cl2 at room temperature to afford the cationic complexes [Mo(GeCl3)(CO)2{Ph2P(CH2) PPh2}(L?L)]Cl (5 and 6) in good yield. The cationic nature of 6 was established by chloride exchange by reacting Na[BPh4] with 6 in acetonitrile to give the tetraphenylborate complex [Mo(GeCl3)(CO)2{Ph2P(CH2)PPh2}2][BPh4] (7). Reaction of equimolar quantities of [MoCl(GeCl3) (CO)3(NCMe)2] and PhP(CH2CH2PPh2)2 in CH2Cl2 at room temperature afforded the dicarbonyl complex [MoCl(GeCl3)(CO)2{PhP(CH2CH2PPh2)2}] (8) in good yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号