首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Processes for the production of xylenes, which occur in an integrated aromatic complex, are discussed. A brief overview of the work carried out at Indian Petrochemicals Corporation Limited for the development of zeolite-based catalytic processes for the production of aromatics is presented. This includes xylene isomerization, transalkylation and disproportionation of C7 and C9 aromatics for maximization of xylenes, selective disproportionation of toluene and selective alkylation of mono-alkylaromatics to p-dialkylbenzene. Achievements in the commercialization of zeolite-based catalysts and processes for isomerization of m-xylene to p- and o-xylene along with dealkylation of ethylbenzene, and for selective ethylation of ethylbenzene to produce p-diethylbenzene are highlighted.  相似文献   

2.
The hydrogenolysis of dimethyl disulfide in the presence of Ni,Mo and Co,Mo bimetallic sulfide catalysts was studied at atmospheric pressure and T = 160–400°C. At T ≤ 200°C, dimethyl disulfide undergoes hydrogenolysis at the S-S bond, yielding methanethiol in 95–100% yield. The selectivity of the reaction decreases with increasing residence time and temperature due to methanethiol undergoing condensation to dimethyl disulfide and hydrogenolysis at the C-S bond to yield methane and hydrogen sulfide. The specific activity of the Co,Mo/Al2O3 catalyst in hydrogenolysis at the S-S and C-S bonds is equal to or lower than the total activity of the monometallic catalysts. The Ni,Mo/Al2O3 catalyst is twice as active as the Ni/Al2O3 + Mo/Al2O3 or the cobalt-molybdenum bimetallic catalyst.  相似文献   

3.
Pt-containing catalysts based on halloysite aluminosilicate nanotubes and ZSM-5 zeolite were synthesized. The structure of the materials was confirmed by low-temperature nitrogen adsorption/desorption and by transmission electron microscopy. The activity and selectivity of the synthesized catalysts based on micromesoporous supports in isomerization of the xylene reforming fraction was studied on a flow-through laboratory installation with a fixed catalyst bed in the temperature interval 360–440°С at elevated hydrogen pressure. The influence exerted by the textural characteristics of the support and acidity of the materials on the catalyst activity in isomerization of o- and m-xylenes and of ethylbenzene with the aim of obtaining p-xylene was studied.  相似文献   

4.
In this article, a binderless dealuminated HZSM-5 zeolite (Si/Al = 41.4) was used as a catalyst for the isomerization of a mixture of ethylbenzene and xylene. The experimental results indicated that at low residence times the catalyst is effective to isomerize the ethylbenzene into xylenes. A comprehensive kinetic model considering chemisorption, surface chemical reactions, and diffusional processes was developed for this reaction. The intrinsic activation energy (71.99 kJ mol−1) for the surface reaction of ethylbenzene into m-xylene was calculated for the first time, and the corresponding intrinsic activation energies for o-xylene to m-xylene and m-xylene to p-xylene surface reactions were calculated to be 59.45 and 50.68 kJ mol−1, respectively. Lower apparent values have been reported in the literature, and we rationalize that they correspond to multistep processes and intrinsically include a negative activation energy pertaining to chemisorption. The results also revealed that the ethylbenzene diffusion within the zeolite channels was four orders of magnitude smaller than p-xylene.  相似文献   

5.
The transformation of o-xylene in low concentration (1 700 ppmv) into air was investigated over Pd and Pt/HFAU catalysts (framework Si/Al ratio equal to 17 and 100). Whatever the catalyst, o-xylene oxidation into CO2 and H2O is accompanied by the retention within the zeolite pores of heavy compounds (‘coke’). The relative significance of these reactions depends on the operating conditions (temperature, time-on-stream) and on the catalyst characteristics (Pd or Pt, Si/Al ratio). Over Pt and Pd/HFAU(17), time-on-stream has a positive effect on the xylene oxidation apparently related to the reducibility of Pd and Pt species during the reaction. The higher activity of Pt/HFAU catalysts can be attributed to its greater number of active species (especially Pt0). Those active species can be more rapidly formed than Pd0 by auto reduction during the calcination of Pt precursor. Whatever the metal, the higher the Si/Al ratio of the support, the faster the xylene oxidation and the lower the coke formation. This can be related to the higher proportion of reduced species (Pd0 and Pt0) formed on the more dealuminated catalyst but also to the hydrophobicity of the support. Indeed, the hydrophobicity of the zeolite play a positive role in the oxidation activity in presence of steam; the higher the Si/Al ratio of the zeolite, the faster the o-xylene oxidation. Thus a catalyst with a low platinum content supported on a hydrophobic zeolite (0.10 Pt/HFAU(100)) allows to oxidising totally o-xylene at 210 °C in presence of steam.  相似文献   

6.
Poly(vinyl chloride) (PVC) alone or mixed with 10 wt-% and 50 wt-% TiO2, SnO2, ZnO, and Al2O3 were pyrolyzed by using a pyrolysis gas chromatograph. Benzene, toluene, ethylbenzene, o-xylene, styrene, naphthalene, and various chlorobenzenes were identified. No hydrocarbons could be detected in pyrolysis products of any samples at 200°C. More aromatic hydrocarbons than aliphatic hydrocarbons are released from the PVC–TiO2 system and in preheated PVC. The contrary result is observed in the PVC–ZnO and PVC–SnO2 systems. Aromatics having methyl endgroups are easily released from the PVC–ZnO and PVC–SnO2 systems and at elevated pyrolysis temperature, because methylene groups are easily isolated along the chain by ZnO, SnO2 and the heating. The release of ethylbenzene o-xylene, and chlorobenzenes suggests a repeated dehydrochlorination and recombination of HCl and Cl2 to double bonds along the chain. Possible decomposition mechanisms of PVC are discussed.  相似文献   

7.
Temperature dependence of the limiting activity coefficients of saturated (n-hexane, n-heptane, n-octane, and cyclohexane) and aromatic (benzene, toluene, ethylbenzene, o-xylene) hydrocarbons in phenol was studied in the temperature range 308–348 K by the headspace analysis method.  相似文献   

8.
Abstract

The gas chromatographic method proposed by us for simple and accurate measurement of isothermal phase equilibria has been applied to the binary mixtures formed by alkylbenzenes amongst themselves. Results on the binary mixtures of: benzene - toluene, toluene + o-xylene, toluene + p-xylene, toluene + ethylbenzene, ethylbenzene + o-xylene and ethylbenzene + p-xylene are presented in this paper. The present measurements on benzene + toluene system at 40°C are in good agreement with the isothermal phase equilibrium data available in the literature.  相似文献   

9.
The equimolar mixtures of typical lanthanide shift reagents such as Eu(fod)3, Pr(fod)3 or Yb(fod)3 with silver trifluoroacetate, previously used to induce paramagnetic shifts in the 1H NMR spectra of alkenes, have been successfully applied to simple aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylenes. In benzene and p-xylene the signals of all the aromatic protons are shifted identically. In other substituted benzenes the magnitude of the induced shift depends on the distance between the proton and the substituents. In addition, the different behaviour of the signals of the methyl groups in meta-and para-xylene on the addition of the complex shift reagent allows the quantitative analysis of the two xylenes in their mixtures.  相似文献   

10.
The activities of a zeolite-containing catalyst and catalysts containing a noble metal in intermolecular hydrogen transfer between С6 hydrocarbons are compared. The zeolite-containing catalyst is ineffective in hydrogen transfer from cyclohexane to 1-hexene and in cyclohexene conversion at <400°С. Cyclohexene disproportionation at Т < 200°С takes place only over catalysts containing a noble metal. The cyclohexene conversion selectivity depends strongly on the support type. Using deuterated compounds, it has been demonstrated that intermolecular hydrogen transfer via the dehydrogenation–hydrogenation mechanism involves only the initial cyclohexene.  相似文献   

11.
The kinetics and reaction network of the one-pot synthesis of R-1-phenylethyl acetate was investigated at 70°C in toluene over a combination of three different catalysts: PdZn/Al2O3 as a catalyst for acetophenone hydrogenation, lipase as an enzymatic catalyst for R-1-phenylethanol acylation with ethyl acetate and Ru/Al2O3 as a racemization catalyst for S-1-phenylethanol. In addition to the desired reactions, other reactions, namely hydrogenolysis and dehydration of (R, S)-1-phenylethanol and debenzylation of (R, S)-1-phenylethyl acetate also occurred. The kinetic results revealed that ethylbenzene formation was enhanced with higher amounts of PdZn/Al2O3, whereas lipase did not catalyze ethylbenzene formation. Furthermore, ethylbenzene was formed in the hydrogenolysis of (R, S)-phenylethanol and in the debenzylation of (R, S)-1-phenyl-ethylacetate over Pd/Al2O3 catalyst. The presence of Ru/Al2O3 catalyst, in which Ru was in the oxidation state of 3+, enhanced the formation of R-1-phenylethyl acetate, although no clear racemization of S-1-phenylethanol during the one-pot synthesis of R-1-phenylethyl acetate was observed. Dynamic kinetic resolution of (R, S)-1-phenylethanol in toluene, was, however, demonstrated over Ru/Al2O3 and lipase.  相似文献   

12.
Conversion of methane to higher hydrocarbon products, in particular, aromatic hydrocarbons has been achieved with good methane conversion and selectivity to aromatic products over heterogeneous catalysts using both high power pulsed microwave and rf energy. For example, under microwave irradiation > 85% conversion of methane and 60% selectivity to aromatics could be achieved. Cu, Ni, Fe and Al metallic materials are highly effective catalysts for the aromatization of methane via microwave heating; however, with a variety of supported catalysts the major products were C2 hydrocarbons and the conversion of methane was low. The use of sponge, wire and net forms of these metal catalysts was found advantageous in effective methane conversion. The reactions are considered to be free radical in nature and to proceed through an intermediate stage involving formation of acetylene. The influence of catalyst nature and configuration, as well as the microwave and rf irradiation parameters on the reaction efficiency and product selectivity has been examined in both batch and continuous flow conditions.  相似文献   

13.
This work developed a one-step process for renewable p-xylene production by co-catalytic fast pyrolysis (co-CFP) of cellulose and methanol over the different metal oxides modified ZSM5 catalysts. It has been proven that \begin{document}${\rm{L}}{{\rm{a}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}$\end{document}-modified ZSM5(80) catalyst was an effective one for the production of bio-based p-xylene. The selectivity and yield of p-xylene strongly depended on the acidity of the catalysts, reaction temperature, and methanol content. The highest p-xylene yield of 14.5 C-mol% with a p-xylene/xylenes ratio of 86.8% was obtained by the co-CFP of cellulose with 33wt% methanol over 20%\begin{document}${\rm{L}}{{\rm{a}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}$\end{document}-ZSM5(80) catalyst. The deactivation of the catalysts during the catalytic pyrolysis process was investigated in detail. The reaction pathway for the formation of p-xylene from cellulose was proposed based on the analysis of products and the characterization of catalysts.  相似文献   

14.
In this study, COx-free hydrogen production via methane decomposition was studied over Cu–Zn-promoted tri-metallic Ni–Co–Al catalysts. The catalysts have been prepared by the constant pH co-precipitation method, and the nominal Ni metal loading was fixed at 50 wt % along with other metals at 10 wt% each. The catalyst activity for methane decomposition reaction was examined in a reactor between 400 °C and 700 °C and at atmospheric pressure. Different techniques such as N2-physisorption, X-ray diffraction, H2-TPR SEM, TEM, ICP-MS, TGA, and Raman spectroscopy were applied to characterize the catalysts. The relation between the catalyst composition and their catalytic activity has been investigated. The controlled synthesis has resulted in a series of catalysts with a high surface area. Ni–Co–Cu–Zn–Al was the most active and productive catalyst. Various characterizations indicate that the promotional effects of Cu–Zn interaction were the critical factor in catalysts' activity and stability. Ni–Co–Cu–Zn catalyst gave the highest methane conversion of 85% at 700 °C. Zn addition improves the stability of the catalyst by retaining the active metal size during the decomposition reaction. The catalyst was active for 80 h of stability study. The rapid deactivation of the Ni–Co catalyst was due to the sintering of the catalyst at 650 °C. Moreover, carbon species accumulated during the methane decomposition reaction depend on the catalysts' composition. Zn promotes the growth of reasonably long and thin carbon nanotubes, whereas the diameter of carbon nanotubes on unpromoted catalysts was large.  相似文献   

15.
A series of metal‐modified HZSM‐5 catalysts were prepared by impregnation and were used for ethylbenzene dealkylation of the mixed C8 aromatics (ethylbenzene, m‐xylene and o‐xylene). The effects of different supported metals (Pt, Pd, Ni, Mo) on catalytic performance, including reaction conditions, were investigated. The physicochemical properties of catalysts were characterized by means of XRD, BET, TEM and NH3‐TPD. Experimental results showed that metallic modification obviously increased the ethylbenzene conversion and reduced the coke deposition, greatly improving the catalyst stability. The distinction of ethylbenzene conversion depended on the interaction between hydrogenation reactivity and acidic cracking of bifunctional metal‐modified zeolites. Compared with Pt and Ni, Pd and Mo were easier to disperse into HZSM‐5 micropores during loading metals. The acidic density of different metal‐modified HZSM‐5 declined in the following order: HZSM‐5>Pt/HZSM‐5>Pd/HZSM‐5>Ni/HZSM‐5>Mo/HZSM‐5. The activity of ethylene hydrogenation decreased with Pt/HZSM‐5>Pd/HZSM‐5>Ni/HZSM‐5>Mo/HZSM‐5. In comparison, Pd/HZSM‐5 showed the best catalytic performance with both high activity and high selectivity, with less cracking loss of m‐xylene and o‐xylene. Moreover, the following reaction conditions were found to be preferable for ethylbenzene dealkylation over Pd/HZSM‐5: 340°C, 1.5 MPa H2, WHSV 4 h?1, H2/C8 4 mol/mol.  相似文献   

16.
The conventional impregnation method was used to prepare 15 wt% Mn-supported catalysts, which were applied to the catalytic oxidation of volatile organic compounds (VOCs; toluene, benzene, and o-xylene). The effects of calcination temperatures in the range of 500–900 °C and supports (γ-Al2O3, SiO2, and TiO2) on the property and performance of 15 wt% Mn-supported catalysts were investigated. Their physicochemical characteristics were analyzed by the BET, XRD, NH3–TPD, H2–TPR, and XPS. The calcination temperature greatly affected the crystalline structure and O1s D (defect oxides)/O1s L (lattice oxides) area ratio of the 15 wt% Mn/γ-Al2O3 (15 Mn/Al) catalyst. The order of the O1s D/O1s L area ratios of the 15 Mn/Al catalysts with respect to calcination temperature was 900 > 500 > 700 °C, which was in good agreement with that observed for the catalytic activity. In addition, the activity order of the 15 wt% Mn-supported catalysts with respect to the type of support was γ-Al2O3 > SiO2 > TiO2. The 15 wt% Mn/Al catalyst, which had a higher O1s D/O1s L area ratio, showed better activity than the 15 wt% Mn/SiO2 (15 Mn/Si) and 15 wt% Mn/TiO2 (15 Mn/Ti) catalysts. Defect oxides played a significant role in the catalytic oxidation of VOCs. The catalytic activity with respect to the type of VOC decreased in the order of benzene > toluene > o-xylene.  相似文献   

17.
It has been established that at high temperatures (above 450°C) the V2O5−ZrO2 catalyst exhibits a higher selectivity in the oxidation ofo-xylene to phthalic anhydride than does the conventional V2O5−TiO2(a) catalyst. The catalyst selectivity is found to increase with respect to partial oxidation ofo-xylene, the valuable by-product maleic anhydride being obtained. Studies by different physicochemical methods have shown that V2O5−ZrO2 undergoes no significant phase and structural changes under high-temperature conditions.  相似文献   

18.
Graphite is introduced as a convenient catalyst for cyclohexene-promoted photooxidation of p-xylene, ethylbenzene, and cumene by air. Availability of the reagent (air), lack of chemical waste, low toxicity, and reusability of the catalyst make the process a good green alternative of oxidation of these industrially important hydrocarbons.  相似文献   

19.
Methane adsorption on the Pt–H/Al2O3 and Pt/Al2O3 catalysts begins at Т = 475°C and is accompanied by the appearance of hydrogen in the reaction medium. At a higher temperature is raised to 550°C, the amount of adsorbed hydrogen increases to 1.1 and 0.8 mol/(mol Pt), respectively. According to the calculated degree of methane dehydrogenation on platinum sites at Т = 550°C, the Н/C ratio is 1.3 (at/at) for the Pt–H/Al2O3 catalyst and 1.5 (at/at) for the Pt/Al2O3 catalyst. The introduction of n-pentane into the reaction medium increases the yield of aromatic hydrocarbons (benzene and toluene) by a factor of 8.8 over the arene yield observed in individual n-pentane conversion. A mass spectrometric analysis of the arenes obtained with the Pt/Al2O3 catalyst has demonstrated that 37.5% of the adsorbed methane is involved in the methane–n-pentane coaromatization yielding benzene and toluene.  相似文献   

20.
Two types of granular catalysts for effective methane combustion in combustors of gas turbine plants (GTPs) were developed: (1) catalysts based on noble metals with a low Pd content (1–2 wt %), characterized by a low methane ignition temperature, and (2) catalysts based on manganese oxides and hexaaluminates, which have an increased thermal stability. The methane oxidation kinetics was investigated, and combustion in the catalyst chamber of the GTP was simulated. For optimizing the combustion technology, the following two-step process using a combined catalytic package is suggested. The inlet zone of the combustor is filled with a highly active Pd catalyst, which initiates methane oxidation and ensures that the temperature at the exit of this zone is the initial temperature of methane combustion. This takes place in the next zone, which is filled with an oxide catalyst tolerant to high temperatures. The pilot testing of the catalysts was carried out in a model catalytic combustor. The results are in satisfactory agreement with calculated data. Long-term tests indicate the high stability of the catalysts. The Pd catalyst was demonstrated to retain its high activity and to provide an ignition temperature of 240°C. The initial activity of the hexaaluminate-based catalysts remains unchanged after tests at 930°C. The use of a combined charge of the palladium (7–15%) and manganese (85–93%) catalysts in the model GTP combustor allows a high natural gas combustion efficiency to be achieved at a low level of hazardous emissions (NO x , 0–1 ppm; CO, 1–3 ppm; hydrocarbons, 3–10 ppm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号