首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactions of alloxan (all) with [PtL(PPh3)2] (L′= trans-stilbene, L″ diphenylacetylene) afford the side-bonded ketone complex [Pt(all)(PPh3)2] which may also be obtained from the hydrate of alloxan and [PtL′(Pph3)2]. Similarly diethyl oxomalonate (dio) and [Pt(PPh3)4] afford a side-bonded ketone complex [Pt(dio)(PPh3)2]. Reaction of isatin with [Pt(PPh34] gives trans-[PtH{NCO(o-C6H4)CO}(PPh3)2] and benzoyl cyanide and [PtL′(PPh3)2] give cis-[Pt(CN)(COPh3)2] and trans-[Pt(CN)2(PPh2)2].  相似文献   

2.
Treatment of [{Ir(COD)(μ-Cl)}2] with excess of the electron-rich olefin [CN(Ar)(CH2)2NAr]2 (abbreviated as (LAr)2, Ar = C6H4Me-p or C6H4OMe-p) affords the ortho-metallated tricycle [Ir(LAr)3], which for Ar = C6H4Me-p (Ia) with HCL yields [Ir(LAr)2(LAr)]Cl (IV); X-ray data show that in IV there is an unexpectedly close Ir?C(o-aryl) contact (2;52(1) Å) involving the “free” LAr which compares with an IrC(o-aryl) distance of 2.09(3) Å in Ia or 2.07(3) Å in the ortho-metallated LAr ligand of complex IV.  相似文献   

3.
4.
The new phosphine, PBut2Bui (L), was prepared from But2PCl and LiBui. PPh2Bui (L′) was prepared from Ph2PCl and LiBui. Treatment of [PtCl2(NCBut)2] with L′ gives [PtCl2L′2] which does not cyclometallate even on prolonged boiling in 2-methoxyethanol. In contrast, [PtCl2(NCBut)2] reacts with PBut2Bui in boiling 2-methoxyethanol to give the cyclometallated complex [Pt2Cl2(PBut2CH2-CHMeCH2)2] (II, X = Cl). The corresponding bromide, iodide and acetylacetonate were prepared. With PPh3 II (X = Cl) gives [PtCl(PBut2CH2CHMeCH2)(PPh3)] which with NaBH4 gives [PtH(PBut2CH2CHMeCH2)(PPh3)]. Na2PdCl4 with L (2 mol equivalents) gave trans-[PdCl2L2], which was converted into trans-[Pd(NCS)2-L2] by metathesis with KSCN. Treatment of Na2PdCl4 with L (1 mol equivalent) gave [Pd2Cl4L2], which on heating in 2-methoxyethanol gave [Pd2Cl2(PBut2CH2-CHMeCH2)2], as a mixture of syn- and anti-isomers. The complexes trans-[PdCl2-L′2] and [Pd2Cl4L′2] were also prepared. 1H- and 31P NMR data are given.  相似文献   

5.
The cyclometallation of p-RC6H4CHNCH2C6H2, (R = H, Cl, NO2) by PdX2 (X = Cl, AcO) has been studied.In every case the cyclometallation occurs with formation of a five-membered ring containing the methine group. The structure of these compounds [PdX(p-RC6H3CHNCH2C6H5)]2, derived from 1H NMR spectra, are different from those reported previously. Reaction of these compounds with PEt3 gives the compounds [PdX(p-RC6H3CHNCH2C6H5)(PEt3)2] but with an excess of PPh3 only the complexes [PdX(p-RC6H3CHNCH2C6H5)(PPh3)] are formed.  相似文献   

6.
The reaction of [Pt((F3C)CCH(CF3))(P(C2H5)3)2CH3OH]PF6 with allene in methanol affords a novel metallocyclic ethereal complex [Pt((F3C)CHC(CF3)C(CH3)CH2OCH3)(P(C2H5)3)2]PF6, which has been characterized by 1H, 2H, 19F and 31P NMR spectroscopy. Its structure has also been determined by a single crystal X-ray analysis. The crystal are monoclinic, space group P21/n, with cell dimensions a 20.012(5), b 17.222(5), c 8.902(3) Å and β 91.54(5)°. The structure was refined by full matrix least-squares methods on F, using 3097 unique observations collected by automated four circle diffractometer. Refinement converged at R  0.066. The Pt atom has a distorted square-planar coordination geometry, with cis P atoms, and PtP distances of 2.219(4) Å (trans to O) and 2.324(4) Å (trans to C). These results show the ethereal group is a weak ligand to platinum(II) but because of the chelating effect, its displacement by other ligands is thermodynamically not favorable. The mechanism of formation of the ethereal complex is also discussed.  相似文献   

7.
The displacement of tetrahydrofuran (THF) from W(CO)5(THF) with hexaphenylcarbodiphosphorane yields a compound with a carbon-metal bond (CO)5W C[P(C6H5)3]2. The in situ photolysis of tungsten hexacarbonyl and hexaphenylcarbodiphosphorane, however, yields a product (CO)5W?CC +P(C6H5)3. Ethylenebis(triphenylphosphine)platinum and hexaphenylcarbodiphosphorane in benzene yield a platinum containing heterocycle [(C6H5)3P]2PtC[ P(C6H5)3]P-(C6H5)3.  相似文献   

8.
The platinacyclopentane derivative [Cl(CH2)3R2P](Cl)PtPR2CH2CH2CH2 is formed by action of Cl(CH2)3PR2 on Pt(COD)2 in n-hexane via the not isolable Pt[PR2(CH2)3Cl]2 (R  C6H11) by oxidative addition of a CCl bond to platinum. [μ-CIRh(CO)2]2 reacts in benzene with Cl(CH2)3PR2 under partially CO substitution to give the stable intermediate Cl(OC)Rh[PR2(CH2)3Cl]2. In boiling toluene oxidative addition of a CCl bond to rhodium occurs under formation of the phospharhodacyclopentane [CI(CH2)3R2P] Cl2(OC)-RhPR2CH2CH2CH2 (R  C6H5). The 31P{1H}-NMR spectra of the rhodium compound is characterized by an ABX system, that of the platinum by superposition of an ABX pattern with an AB spectrum.  相似文献   

9.
The interaction of (Ph3P)2PtO2 (I) with the dicarboxylic acids HO2C(CH2)nCO2H (n = 1–3), phthalic acid and maleic acid gives the dicarboxylato complexes (Ph3P)2PtO(O)C(CH2)nC(O)O (II) (n = 1–3), (Ph3P)2PtO(O)CC6H4C(O)O (III) and cis-[(Ph3P)2Pt(O(O)CCHCHC(O)OH)2] (IV) in nearly quantitative yield. Thermal and photoinduced decarboxylation of III and IV yields the platina heterocycles (Ph3P)2PtC6H4C(O)O (V) and (Ph3P)2PtCHCHC(O)O (VI) with a carbon-platinum σ-bond. Complex VI has been characterized by an X-ray crystal structure determination.  相似文献   

10.
Unstable transition metal compounds formed from hydridosilacyclobutanes are described: 1-methyl-1-silacyclobutane reacts with nonacarbonyldiiron to give the complexes [Fe(CO)4(H){Si(Me)CH2CH2CH2}] and [Fe{CH2CH2CH2Si(H)Me}(CO)4], and with bis(triphenylphosphine)(ethylene)platinum(0) to give [Pt(H)(PPh3)2{Si(Me)CH2CH2CH2}].  相似文献   

11.
Solutions of diorganotellurium(IV) diperchlorates R2Te(ClO4)2 (where R = Ph, p-CH3OC6H4, R2Te = C4H8Te) may be prepared by the reaction of R2TeCl2 and AgClO4 or by the reaction of diorganyltelluroxide with excess of 70% HClO4.IR and conductivity data indicate that Ph2Te(ClO4)2 possesses covalently bonded perchlorate groups in solution. Interaction of the freshly prepared solutions with Lewis bases affords cationic complexes of the types [R2Te(ClO4)(L)][ClO4] and [R2Te(L)2][ClO4]2 which have been characterised by IR elemental analyses and conductivity measurements.  相似文献   

12.
13.
In the field of anionic initiators of ethylene oligomerization, we have studied the reactivity of nBuLi complexed by tertiary amines such as tetramethylethylenediamine (TMEDA), tetraethylethylenediamine (TEEDA) and pentamethyldiethylenetriamine (PMDT). RMN shows high field shift of the —CH2— protons next to the lithium. This shift is less important for TEEDA compared to those for TMEDA and PMDT. Steric hindrance due to the ethyl groups of TEEDA seems to forbid easy access of the nitrogen atoms to the lithium counter-ion. These results agree well with the kinetic studies which indicate the absence of aggregated species. The following equations have been established: Vp = kp·K12D[(nBuLi:TMEDA)2]12[Et]. and Vp = kp[nBuLi:TEEDA][Et]  相似文献   

14.
The electron deficient acetylene, hexafluorobut-2-yne, reacts with molybdenum and tungsten methanethiolate derivatives (prepared in situ) to give vinyl and three-, five-, or six-membered heterocyclic derivatives: [Cp(OC)- MoC(O)C(CF3)C(CF3)C(O)SMe], [Cp(OC)2MC(CF3)C(CF3)C(CF3)C(O)SMe], [CpW(CO)3C(CF3C(CF3)SMe], [CpW{η3-C(CF3)C(CF3)C(SMe)OC(O)}-(CO)2]. These reactions contrast with those of trifluoropropyne where no organometallic species are obtained. On heating or irradiation with CF3CCCF3 [CpMH(CO)3] gives known bridged species and in the presence of dimethyl disulphide the vinyl derivative [CpM(CO)3C(CF3)C(CF3)H]and an isomer of undetermined structure.  相似文献   

15.
Treatment of Ir2Cl2(C8H14)4 with the phosphines t-Bu3?nP(CH2CMe3)n (n = 3,2,1) in hot toluene followed by crystallization of the products from C7H8/ EtOH mixtures gave the cyclometallated hydrides (C8H14)2Ir-μ-Cl2IrH[CH2CMe2CH2P(CH2CMe3)2][P(CH2 (I) [t-BuP(CH2CMe3)2]2H2Ir-μ-Cl2IrH[CH2CMe2CH2PBut(CH2CMe3)][t-BuP(CH2CMe3)2] (II), and [(t-Bu2PCH2CMe2CH2)HIrCl]2 (III). The dihydrides IrH2Cl[t-BuP(CH2CMe3)2]2 (IIa) and IrH2Cl(t-Bu2PCH2CMe3)2 (IIIa) were also isolated; these species were, however, more conveniently obtained by bubbling hydrogen through the solution of Ir2Cl2 (C8H14)4 and the respective phosphine in toluene. i-Pr3 reacted with the olefiniridium(I) precursor in C7H8/EtOH to yield the carbonyl complexes (i-Pr3P)2H2Ir-μ-Cl2Ir(CO)(PPri3)2 (IV) and IrCl(CO)(PPi3)2 (IVa), no cyclometallated product being detected. The stereochemistries of the complexes were deduced from IR, 1H, 31P, and 13C NMR data. The crystal structures of IIIa and IVa were also determined.  相似文献   

16.
17.
The preparation of the first mixed metal cyclometallated compounds [ClPd(p-RC6H3CHNNCH(p-RC6H3))PtCl]n (R = H, Cl) are reported; they were made from monocyclopalladated [(AcO)Pd(p-RC6H3CHNNCH(p-RC6H4)]2 and PtCl42?.  相似文献   

18.
The kinetics of the reaction of arylcyclopropanes (4-XC6H4C3H5, X = H, Me, EtO) with either [Pt2Cl2(μ-Cl)2(C2H4)2] or [{PtCl2(CH2CH2CH2)} in tetrahydrofuran to give in each case [{PtCl2(CHArCH2CH2)}4] and ethylene or cyclopropane, respectively, have been studied. The reactions are essentially first order in both arylcyclopropane and platinum complexes. The order of reactivity follows the series X = EtO > > Me > H, and [Pt2Cl2(μ-Cl)2(C2H4)2]> [{PtCl2(CH2CH2CH2)}4] and the rate is accelerated in polar solvents. Mechanisms in which the arylcyclopropane first coordinates to platinum and then undergoes ring opening reactions are proposed.  相似文献   

19.
The kinetics of the reaction of alkenes (e.g. cis-pent-2-ene, hex-1-ene, cyclopentene) with [PtX2(CH2CH2CH2)(THF)2] (X = Cl or Br, THF = tetrahydrofuran) or with [PtCl2(CHPhCH2CH2)(THF)2] in THF solution have been studied. The reactions occur with displacement of cyclopropane or phenylcyclopropane to give [PtCl2(olefin)(THF)], and follow essentially second order kinetics, first order in both platinum complex and olefin. The mechanism of reaction is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号